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Introduction

The Galois theory of noncommutative rings is a natural outgrowth of the classical
Galois theory of fields. Let G be a group of automorphisms of a ring R. Then we
are concerned with the relationship between R and the fixed ring R® and with the
relationship between the subgroups of G and the intermediate rings S 2 RC. Need-
less to say, some assumptions on R and reasonably strong assumptions on G are
required for really good results.

Work on this subject was begun by E. Noether [2 (1933)] in her study of inner
automorphisms of central simple algebras. This was continued in the 1940’s and
1950’s where the work still concerned rather special rings R. For example the Galois
theory of division rings was initiated by N. Jacobson {7 (1940)] and [8 (1947)], H.
Cartan [1 (1947)] and G. Hochschild [5 (1949)]. Complete rings of linear trans-
formations were investigated by T. Nakayama and G. Azumaya [17 (1947)], J.
Dieudonné [3 (1948]) and somewhat later A. Rosenberg and D. Zelinsky [20 (1955}]
studied continuous transformation rings. Much of this can be found in Jacobson’s
book [9 (1956)]. In addition, simple Artinian rings were considered by G.
Hochschild [6 (1950)], T. Nakayama [18 (1952)] and in a long series of papers by
H. Tominaga and T. Nagahara leading to their monograph [21 (1970)].

In the 1960’s a great deal of work was done on the Galois theory of separable
algebras. Among the many papers on this subject, we note in particular [15 (1966)]
by Y. Miyashita, [2 (1967)] by L.N. Childs and F.R. DeMeyer, [22 (1969)] by O.E.
Villamayor and D. Zelinsky and [14 (1970)] by H.F. Kreimer. The best results to
date are due to V.K. Kharchenko in [10 (1975)], [11 (1975)] and [12 (1977)] where
he develops a Galois theory for semiprime rings.

In the beginning of this paper we discuss the work of Kharchenko in the special
case of prime rings. We have made this simplifying assumption to greatly facilitate
the exposition. The proofs in the semiprime case invariably start with a Zorn’s
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lemma argument to find an idempotent maximal with some property and then pro-
ceed as in the prime case. There are admittedly a number of difficult technical
details which must be handled when R is semiprime. Nevertheless, the basic flow
of the proofs is the same and at the very least we hope this part of the paper can
serve as an introduction to [12].

Although most of the results in Sections 2 through 8 and half of those in Section
9 are due to Kharchenko, there are some new approaches and some new emphasis
here. For example in Section 2 we offer a new proof of the existence of trace forms.
Later, our use of trace forms of minimal length avoids the notion of independence
of automorphisms. In Section 5, we stress the bimodule properties as a key in-
gredient in the theory. Our formulation of the Galois homogeneity condition in Sec-
tion 6 differs from the original and we think it is more natural.

In the remainder of this paper, most of the results are new. In Section 9 we con-
sider the minimal primes of RC. In Sections 10 and 11 we study the problem of ex-
tending isomorphisms between intermediate rings, using an idea from [13 (1978)].
This enables us, in Section 12, to determine when certain intermediate rings are
Galois over RS. This paper starts with basic notation and statements of the main
results in Section 1. It ends with some examples.

With the exception of a few simple assumed facts on the Martindale ring of
guotients, this paper is essentially self-contained. A good basic reference for the
missing material and for other aspects of Galois theory is the monograph by S.
Montgomery [16 (1980)]. In addition, we recommend the very pleasant survey
article [4 (1980)] by J.W. Fisher and J. Osterburg.

1. N-groups of automorphisms

We are concerned with the action of a group G on a prime ring R. As is to be
expected, certain finiteness assumptions are required for G. However, in order to
even state these, we must first introduce the Martindale ring of quotients of R.

Let R be prime ring and consider th¢ set of all left R-module homomorphisms
J: pI= g R where I ranges over all nonzero two-sided ideals of R. Two such func-
tions are said to be equivalent if they agree on their common domain, which is a
nonzero ideal since R is prime. It is easy to see that this is an equivalence relation.
Indeed, what is needed herc is the observation that if f: g/ 4R with If=0 and if
S is defined on re R, then rf=0. This follows since IrC I so 0=(Ir)f=I(rf) and
hence rf=0 in this prime ring. We let f denote the equivalence class of f and let
Q=0y(R) be the set of all such equivalerce classes.

The arithmetic in Q is defined in a fairly obvious manner. Suppose f: g/—=zR
and g: gJ—zR. Then f+ ¢ is the class of f+g: rUNJ)= ¢ R and f§ is the class of
the composite function fg: g(JI)— g R. It is easy to see that these definitions make
sense and that they respect the equivalence relation. Furthermore, the ring axioms
are surely satisfied so Q is a ring with 1. Finally let r, : x R— xR denote right multi-
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plication by re€ R. Then the map r—7#, is easily seen to be a ring homomorphism
from R into Q. Moreover, if r#0 then Rr,#0 and hence 7, #0 by the observaton
of the preceding paragraph. We conclude therefore that R is embedded isomor-
phically in Q with the same 1 and we will view Q as an overring of R. It is the
Martindale ring of quotients of R.

Suppose f: gI— xR and ael. Then a,f is defined on xR and for all re R we
have

r(a,f) = (ra)f=r(af)=r(af),.

~ /\ ~
Hence 4, f=(af), and the map f translates in Q to right multiplication by f. With
this observation, the following well known result is an elementary exercise.

Lemma 1.1. Let Q=0Q(R).
() If ge Q and Iq=0 for some nonzero ideal I of R, then q=0.

(i) If q15 25 -+ » o € Q, then there exists a nonzero ideal I of R with Iq,, Ig-, ...,
Ig,CR.

(iii) Q is prime. Indeed if q,1q,=0 for q,,q.€Q and I a nonzero ideal of R,
then q,=0 or q,=0.

(iv) If o is an automorphism of R, then o extends uniquely to an automorphism
of Q.

(v) If C=Cy(R), then C is a field and the cenier of Q.

The field C above is called the extended centroid of R. By (iv), we can view Aut R
as a subgroup of Aut Q. An automorphism o of R is said to be X-inner if and only
if it is induced by conjugation by a unit of Q. In other words, these automorphisms
arise from those units ge Q with g"'Rg=R. If q and u are two such units, then
clearly so is gu~!. Thus we see immediately from (iv) that Inn R, the set of all
X-inner automorphisms of R, is a normal subgroup of Aut R.

Now let G act on R and set G,=GNInn R<G. Thus for each g € G, there exists
at least one unit ge Q such that g is equal to conjugation by g. We now let
B=B(G)=Bgr(G) denote the linear span of all unis g € Q such that ¢~ 'Rqg=R ard
conjugation by g is contained in G and hence in G,. By definition, B is closcd
under addition. Furthermore, if g, u € Q give rise to g, h € G respectively, then sureiy
qu gives rise to gh € G. Thus we see that B is closed under multiplication. Moreover
B2 C since the elements of C\O0 are units which centralize R and hence give rise to
the identity automorphism. Thus B is a C-subalgebra of Q clied the algebra of the
group of G.

We can now state the necessary finiteness assumptions on G. The group G is said
to be an M-group of automorphisms of R if and only if

(i) [G:Gpl< >

(ii) B is a semisimple finite dimensional C-algebra.

The product [G : Gy] - dime B is the reduced order of G.
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Now let RG={reR|r3=r for all ge G} be the fixed ring of G. Since B is
spanned by units which act like elements of G, it is clear that B centralizes RE. In
particular, conjugation by any unit of B fixes RE. Because of this, we introduce the
following completeness condition. The group G is said to be an N-group (for Emmy
Noether) of automorphisms of R if and only if G satisfies (i), (ii) above and

(iii) If b is any unit of B, then b~'Rb=R and conjugation by b is an clement of
G.

For many results, we can in fact assume the weaker hypothesis that if b is any
unit of B which normalizes R, then conjugation by b belongs to G. However we will
stay with this stronger assumption.

If S is a subring of R, we define @(R/S)={aeAutR|a fixes S}.Then S is a
Galois subring of R if S is the fixed ring of ¥(R/S). The first main result, proved
in Section 4, is

Theorem A. Let G be an N-group of automorphisms of the prime ring R. Then
%(R/R®)=G.

Now suppose R, G and B are as above and let S be an intermediate ring so that
R2S2RC. In order to decide whether S is a Galois subring of R, the following
four conditions come into play.

[GZ] (Centralizer) If Z=Cg(S), then Z is a semisimple algebra spanned by
its units.
[GI] (Idempotent) Let e be an idempotent of B with eS(1 —e)=0. Then there

exists an idempotent fe Z=Cg(S) with Be=Bf.

[GH] (Homogeneity) Suppose be B\0, g€ G and bs=s¢b for all seS. Then
g=hg, where he 9(R/S) and goe GNInn R.

IGCj (Cancellation) Suppose K is an ideal of S with rg(K)=0. If re R and
KrcsS, then reS.

The main result on Galois subrings, proved in Section 7 is

Theorem B. Let G be an N-group of automorphisms of the prime ring R and let
R2OS2RC. Then S is the fixed ring of an N-subgroup H of G if and only if S
satisfies [GZ], [GI], {GH] and {GC].

This gives rise to numerous correspondence theorems obtained in Section 8. The
next part of this paper is concerned with the structure of the minimal primes of R®¢
and with the nature of the isomorphisms between intermediate rings. For example,
we prove in Section 11 a precise version of

Theorem C. Let G be an N-group of automorphisms of the prime ring R and let
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S,52 R both satisfy [GZ), [GI] and [GH). Suppose ¢ :S—3 is an isomorphism
which is the identity on RS and assume that P and P=P? are corresponding
minimal primes of S and S. Then there exists an elemeni g € G which ‘induces’, in
a well defined manner, the isomorphism ¢ :S/P—S8/P.

In Section 12, we consider when certain intermediate rings are Galois over R°.
For this we require some definitions. Let G be an N-group of automorphisms of
R. If K is an M-subgroup of G, then K can be completed to an N-subgroup K of
G by adjoining to K the action of all units of B(K). Clearly B(K)=F ) and
RX =RX since any element of R fixed by KX is fixed by all units of B(K). Now let
H be a subgroup of G. Then we say that H is almost normal in G if K=Ng(H)
is an M-group with completion K =G. In addition we say that H is an F-group if
it is an N-group with B(H) a simple ring. We remark that if A is an F-group, then
R™ is necessarily a prime ring. Finally we say that R is N-group Calois over S if
%(R/S) is an N-group with fixed ring S. We prove

Theorem D. Let G be an N-group of automorphisms of the prime ring R and let
H be an F-subgroup of G. Then R is N-group Galois over RS if and only if H is
almost normal in G.

We close this section with two simple, but crucial, observations about the units

of Q.

Lemma 1.2. Let G be an M-group of automorphisms of R and let be B. Then there
exists a nonzero ideal I of R with IbC R and bICR.

Proof. Suppose first that g is a unit of B which corresponds to an X-inner automor-
phism geG. By Lemma 1.1(ii), there exist: an ideal J#0 of R with JgCR.
Moreover qJ¢=q(q~'Jg) C R so the result follows for g by taking 7=JNJ9. Final-
ly, by definition of B, any be B is a finite sum b=g, + g, + -+ + g, of such units
g; € B. By the above, for each i there is a nonzero ideal /; of R with /;¢;C R and
q;I; C R. Since R is prime, the result follows for b by taking I=1,NLN---N1,#0.

Lemma 1.3. Let ge Q\0 and let o be an automorphism of R with rq=qr® for all
reR. Then q is a unit of Q and a is X-inner induced by q.

Proof. The relation rg=¢gr® implies easily that /z(q) is a two-sided ideal of R.
Thus since g#0 we conclude from Lemma 1.1(i) that /g(g)=0. Now let / be a
nonzero ideal of R with Ig C R. Since Iq =qlI°, we see that Ig=J is also a two-sided
ideal of R. Furthermore since /gx(q)=0, the right multiplication map ¢:/—J is
one-to-one and onto. Hence if f: J—I denotes the inverse map, then feQis clearly
the inverse of g in Q. Finally the formula ¢~'rg=r° implies that ¢ is X-inner and
in fact induced from gq.
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2. Existence of trace forms

The goal here is to construct certain trace forms, that is linear maps, which send
R to R®. We start by considering any finite dimensional algebra A over a field C.
If A*=Homc(4, C) is the dual group of A, then A* can be given a right 4-module
structure by defining the functional Aa to be

Aa(z)=A(az) for all ze A.

Here AeA* and ae A.

The first part of the following well known result asserts that the module 4* is
isomorphic to the left regular representation of 4. For the second part, if V is a
vector space over C, we say that a basis of V is compatible with the decomposition

V=V,@V,®--- @V, if and only if it is a union of bases of the subspaces V;.

Lemma 2.1. Let {a,,a,,...,a,} be a basis for A and let {a{, a7, ..., a,} be its dual
basis in A*.

(i) If ac A with aa;=Y a;c;, then a’a=Y c;a.

(ii) If e is an idempotent of A, then {a;} is compatible with eA®(1 —e)A if and
only if {a}} is compatible with A*e® A*(1 —e). Furthermore when this occurs then
a; € eA if and only if a*e A*e.

Proof. For (i) write aa;= ¥, a;c; and write a*a= Y, d;a with c

ii»d;; € C. Then

d;=a}a(a;)=at(aa;) =c;.

For (ii), take a=e in the above. Then {q,,a,,...,a,} is compatible with eA®
(1-e)A if and only if the matrix [c;] is diagonal with 0 and 1 entries on the
diagonal. Furthermore, by (i) above this is precisely the same criteria for
{af, a3, ...,a}} to be compatible with A*e@® A*(1 — e). Finally when this occurs then
a;eeA if and only if ¢;=1 and then if and only if a;*€ A%e.

We are interested in whether nontrivial module homomorphisms 6: A*— A exist.
Indeed, if A=A*, then A is said to be a Frobenius algebra and the following is a
well known necessary and sufficient condition for this to occur.

Lemma 2.2. We have A= A* [f and only ¥ there exists A € A* whose kernel contains
no nonzero right ideal of A. Furthermore if A is semisimple, then A is Frobenius.

Proof. Observe that any module homomorphism f:A—A* is determined by
J(1)=A. Moreover f(a) = Aa is the zero map if and only if a4 C ker A. Thus f is one-
to-one and hence an isomorphism if and only if the kernel of A contains no nonzero
right ideal.

Finally if A4 is semisimple, write 4 =@ A4, as a ring direct sum of simple rings.
Since A*= P A}, it clearly suffices in view of Lemma 2.1(ji) to show that A,=A*
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as A;-modules. But this is trivial since dim A; =dim A}, both modules are com-
pletely reducible and A4; has a unique irreducible module.

We remark that the above condition on A is actually right-left symmetric. Further-
more if A has a 2-dimensional right ideal X all of whose subspaces are right ideals,
then it is clear that no such A exists and A is not Frobenius.

Now we assume that G acts on the prime ring R and that the algebra of the group
B is finite dimensional over C. Moreover [{G: Gyl <o where Go=GNInn R. We
define certain linear functions 7: Q—Q.

Lemma 2.3. Let 6: B*—B be a right B-module homomorphism. Let A be a trans-
versal for Gy in G with 1€ A and let b,, b,, ..., b, be a C-basis for B. Then the trace
Jorm

(x) = E (blxe(bl*))g:: E aigxgbig

LgeA

satisfies ay, b€ B and 1(Q) € Q°.

Proof. Let us first consider 7)(x)= Y, ,x6(b}"). If be B and bb; = ¥, b;c, then by
Lemma 2.1(i) since C is the center of Q we have

b( ) b,-x0(b}")> = ¥ bbxbb)= ¥ (2 b,cU>xo(bf)

i J

Moreover since 6 is a right B-module homomorphism, this last term equals
(&, b;x6o})b. Thus for all xe Q, 7;(x) commutes with B and in particular witk
Gy. Since A is a transversal for Gy <G, it is now immediate that t(x)=Y,_, 1,(x)
manc ) tn nG
lllﬂpﬂ z v z .

Now let us specialize to the case in which B is semisimple so that an isomorphism
0: B*— B exists.

Lemma 2.4. Let G be an M-group and let A be a transversal for Go=GN\Inn R in
G with 1e A. Then there exist trace forms
)= Y a;,x%b,
igeA

with az, b € B and 1(Q) ¢ Q° such that

(i) For each ge A, {a;;} and {b;,} are C-bases of B.

(ii) Either basis {a;} or {b;;} may be prescribed beforehand.

(iii) If ee B is an idempotent, then {a; } is compatible with B=eB®(l —e}B if
and only if {b;} is compatible with B=Be® B(1 —e). Furthermore when rhis
occurs then a;, € eB if and only if b;, € Be.
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Proof. Since G is an M-group, B is semisimple so a right B-module isomorphism
0: B*— B exists by Lemma 2.2. We now apply Lemma 2.3 with this particular 6.
Then for any choice of basis {b;}, the trace form 7(x) so constructed satisfies
Q) QF and a,, b, € B. Note that 1€ by assumption.

Now a@;, = b, and b;; = 0(b}") so both {a;,} and {b;;} are bases of B. Moreover the
basis {a;,} may clearly be prescribed beforehand by taking b;=a;, and the basis
{b;;} may be prescrized by choosing {b;} to be the dual basis to {671(b;)} in
B**=B. Indeed if b;=6"'(b;))*, then b}=8"'(b;))**=6""(b;)) so 6(b}") =b;,. Thus
we have (i) and (ii) since a;,=a¥ and b;, =bf.

Finally let e e B be an idempotent. Since 8 is an isomorphism and b;; = 8(b}) it is
clear that {bf,b5,...,b}} is compatible with B*=B*e@® B*(1-¢) if and only if
{h1, b1, ..., by } is compatible with B=Be® B(1 — e). Therefore since a;; = b;, part
(iii) now follows immediately from Lemma 2.1(i).

Since the coefficients of these trace forms belong to B, it is not necessarily true
that 7(R)C R. However we do have

Lemma 2.5. Let t(x)=}%,, @i x%b;, be as in Lemma 2.3 or 2.4. Then there exists a
nonzero ideal I of R such that ©(I) C RC. Indeed if J is any nonzero ideal of R, then
there exists a nonzero ideal K ¢ J with ©(K)c JNRC.

Proof. Let J be a nonzero ideal of R and let a,bel?l and geG. Then_lby Lemma
i.2 there exist nonzero ideals K, and K, of R with ¢® K;CR and K,b® CR. Thus
a® (K, JE K)b? ' cJE

and hence a(K;J¢ K,)!bCJ. In other words we have shown that for each sum-

mand a;, x¥b,, of 7 there exists a nonzero ideal K, with @, (K;,)?b;, C J. Thus setting

K=JN(),,K;;#0 we see that K¢ J and 7(K) < J. Since 7(Q) € Q%, by Lemma 2.3
or 2.4, we therefore have 7(K)C JNRC. The result now follows by taking 7 to be
the appropriate ideal for J=R.

3. Truncation of trace forms

In this section we consider certain trace forms
T(X) = Z a,-x"’bi
i
with @;,b,€ Q and g, AutR. If r,s€ R, then

rT(sx)= E (ra;s°)x°b;

is also a trace form with the same b;, 0;. The idea here is to study sums of expres-
sions of this type and any such expression
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T(x) = ; Iy T(sgx)

is called a (ieft) truncation of T. Notice that

T(X)= Z ﬁ,-x"‘bi with d,'= E rka,sf‘.
i k

If the (left) support of T is defined by {i | a;#0}, then it is clear that
Supp T'c Supp 7. Furthermore, any truncation of 7 is certainly also one of 7. We
seek truncations of T of minimal support size.

Observe that if any o is X-inner, induced by g€ Q, then for any xe R we have
x°=¢q 'xq. Because of this we can usually assume that no X-inner automorphisms
other than =1 occur in 7. Indeed we say that 7, as above, is an outer form, if
g;€Inn R implies o;=1.

Lemma 3.1. Let T(x)= Y, a;x%b; be an outer trace form with a,=1, ay#0. Then
there exist ry, s, € R (depending only upon the a;’s and a;’s) such that

T =Y rnT(sex)= Y d;x°b;
k i

satisfies ;e R, @y#0. Furthermore, if G;#0, then 6;=1 and a;=dyc, for some
c;€ C with cy=1.

Proof. As we will see, the &,’s merely play the role of a place holder here. Thus the
Iy, Sy clements obtained depend only the a;’s and g;’s.

For each i there exists a nonzero ideal L; of R with L;a;CR. Thus if L = r]L, #0,
then La; C R for all i. Furthermore Lay#0. Thus if r€ L is chosen with ra; #0, then
rT(x) is a truncation T of T with ail ;€ R and d,#0. We can now assume that T
has this property.

The proof proceeds by induction on ]Supp T|, the case |Supp 7|=1 being
trivial. Suppose now that |Supp T|>1. It T is a truncation of T with [Supp T
< |Supp T|, then the result will follow by induction provided d,+0. Thus e can
assume that in any truncation of T of smaller support size, the @, term vanishes.

We next show that if T=Y, &x%; is a truncation of T with [Supp 7' <
|Supp T|, then all @ =0, that is T=0. To this end, we already know that d =0 and
we consider @, for £+0. For any re R form the truncation

T'(0) =6,rTE) - T(ray)™ 0 = ¥ aix*d,
so that
a,-'= ara;,— d,'(rak)a;lai.

Then a;=0 so |Supp T’|<|Supp 7| and we must have ag=0. Since d,=0 this
yields 0=ag=d,ra, for all reR. Since R is prime and g,#0 we conclude that
dk = O.

We now know that any truncation of T of properly smaller support size raust be
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identically zero. Let J=RayR be the nonzero ideal of R generated by a@,. Then for
each jeJ, it is clear that there is truncation 7;(x) of T with

T,0= L a,(»"b,

and dy(/)=j. Furthermore we claim that the coefficients 4;(/j) are uniquely deter-
mined. Indeed if T}(x) and 7}'(x) are two truncations of T with the same
0-coefficient j, then .7-}— T; is a truncation of smaller support size and hence is
identically zero.

Thus for each i, 4;: J—R is a well defined function. It is surely additive and it
is in fact a left R-module homomorphism. Indeed by considering rT}(x) we see that
d;(rj)=ra;(j). Thus there exists g;€ Q with 4;(j)=jq; and hence

T, = ¥ (jg)x"b;
with go=1. Furthermore, since go=1 it follows, by considering T;(sx), that
Jsq; =a;(js) = a;(j)s% = jq;s°.

But this holds for all jeJ so sq;=q,;s° for all se R. Since g; #0 for those terms in
the support of T we conclude from Lemma 1.3 that g; is a unit inducing the X-
inner automorphism o;. By assumption, 7" is an outer form, so this implies that
o;=1and g,eC.

We have therefore shown, summing over the support of 7, that

Tj(x)= Z (Jjg)xb;
with g;¢ C and gy=1. Since ay€ J, the result follows by taking j=a,.

The right analog of the above zlso holds. If T(x) = ¥, a;x%b; is a trace form and
r,seR, then T(xr)s=Y,a;x°(rb;s) is clearly a trace form with the same g;, ;.
Tkus we consider right truncations of T and we have

Lemma 3.2. Let T(x)=Y,a;x?b; be an outer trace form with 64=1, by#0. Then
there exist ry, s, € R (depending only upon the b;’s and o;’s) such that

-~

Te)= Y Try)s,= Y a;xb;
k i

satisfies b;e R, by#0. Furthermore, if b;#0 then ;=1 and b,=c;b, for some
c;eC with cy=1. ’

Proof. This actually follows directly from Lemma 3.1. Consider the outer trace
from

T'x)=Y b 'x% g,

Then by Lemma 3.1 there exist elements r;, s; depending only upon the b;’s and
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0',"5 with
“ 1
YT (s x)= Y dix” g
k i

satisfying d; € R, dy#0. Furthermore, if d;#0, then ¢;!=1 and d,=c,d, for some
¢;€ C. Notice that

-1 -1
d;= ; rebf sy

Finally consider
T = ¥ Txry)se= Y a;x”b;.
k i

Then
b= X ritbs=d
k

so the result follows from the above properties of the d,’s.

Since elements of C are allowed to pass across x? in trace forms, we have
immediately

Lemma 3.3. Let T(x)=Y, a,x°b; be an outer trace form with ay=", ay+#0. Then
there exists a left truncation T(x)=dyxB of T(x) with Goe R\O and B=Y%"cb,.
Here c;e C, cy=1 and the sum is over {i|a,~= 1}.

Lemma 3.4. Let T(x)=Y,a;x°b; be an outer trace form witn oy=1, by#0. Then
there exists a right truncation T(x)=axby of T(x) vath bye R\0 and a=Y¥'a,c,.
Here c;e C, cy=1 and the sum is over {i|a,=1}.

Finally we show that outer trace forms are nontrivial.

Lemma 3.5. Let T(x)= Y, a;x°b; be an outer trace form with ay=1 and let I be a
nonzero ideal of R. Suppose that either by+0 and {ai‘ o, =1} is C-linearly indeperi-
dent or ay+0 and {b; | o;=1} is C-linearly independent. Then T(I)#0.

Proof. If T(I) =0, then certainly T(Z)=0 for any right or left truncation T of T.
In particular if by#0 and T=axb, is given as in Lemma 3.4, this yields alb,=0.
But 5, #0 so we must have 0=a = ¥'a,c; and these a;'s are C-linearly dependent
since ¢y = 1. Similarly if a,#0, the result follows from Lemma 3.3.

4. Properties of the fixed ring
We assume throughout that G is an M-group of automorphisms of R and that

B c Qis the algebra of the group. The results here are almost immediate applications
of the existence and truncation properties of trace forms.
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Proposition 4.1. C,(R%)=B.

Proof. Certainly CQ(RG) 2 B since B is spanned by elements which induce the X-
inner automorphisms of G. We consider the reverse inclusion. Let ﬂeCQ(RG).
Le: e be a primitive idempotent of B and let / and ©(x)= ¥ a;,x%b;, be as in
Lemmas 2.4 and 2.5. Furthermore for g=1, we can assume that the C-basis {g;,}
is «hosen compatibly with the decomposition B=eB®(1 —e)B. Note that
(i € RS.
Since fee Cy(RC), if T(x) is defined by

T(x) = fet(x) — t(x)Be,

then T vanishes on /. Furthermore in the expression fetr(x) we can delete all those
a;; in (1 —e)B and we use ¥ ' to denote such a deleted sum. By Lemma 3.5 the left
hand coefficients of

T(x)= Y ' Beaxtb,,— Y, a, . x8b;,fe

corresponding to g =1 are C-linearly dependent. Thus there exist ¢;,d; € C, not all
zero, with

pe Y 'cia; =Y dia;.

Note that those a;, in the left hand sum belong to eB and thus fa = Y d,a;, where
a=Y'c;a; is necessarily a nonzero element of eB. Since e is primitive and B is
semisimple, e€ aB and we conclude immediately that fe e B.

Finally if 1 =¢;+--- + ¢, is a decomposition of 1 into orthogonal primitive idem-
potents of B, then since fe; € B for all i we have feB.

As a second application we have

Lemma 4.2. Let q,q’ be nonzero elements of Q, let o € Aut R and suppose that

q'r=r°q for all re RC.
Then o € g(Inn R) for some geG.

Proof. Let 7 and 7(x)=Y, ai;x®b;, be as in Lemmas 2.4 and 2.5 and assume that
a,; =1. If T(x) is defined by

T =q't)-1(x)°q=Y, q'a;,x*b;,— ¥, a3 x*°bgq,

then T vanishes on I since t(f) C R°.

If ¢ g '(Inn R) for any g above, then the only X-inner automorphisms in 7(x)
occur when g =1 and in the first sum. However {b;;} is C-linearly independent and
q'a;;=q'#0 so this contradicts Lemma 3.5. Thus ¢ e g~ !(Inn R) for some geG.
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If S is a subring of R, let
%(R/S)={o€Aut R| g centralizes S}.

We can now quickly prove Theorem A.
Theorem 4.3. Let G be an N-group. Then %(R/R€)=G.

Proof. Certainly %(R/RY)2G. Converseiy, if o€ 4(R/R°), then r°=r for all
re RY so, by Lemma 4.2, we have og ~! € Inn R for some g€ G. If ag~! is the auto-
morphism induced by g € Q, then g clearly centralizes R® and hence g € B by Pro-
position 4.1. Since G is an N-group, the inner automorphism induced by ge B is
also contained in G and hence ¢ € G.

We now consider certain ideals of R and RC. Observe that G acts as automor-
phisms on B and hence G permutes the finitely many centrally primitive idempotents
of B. If f is the sum of the idempotents in a G-orbit, then f is certainly a central
idempotent and we say f is G-centrally primitive. Since B is semisimple, it is clear
that fB is a G-simple ideal of B.

The following two results are a strengthened version of the fact that every'nonzero
ideal of R meets R nontrivially.

Lemma 4.4. Let T be any trace form given by Lemma 2.4 and let J be a nonzero
ideal of R. Then for all ge Q\0 we have ©(J)q+0 and qt(J)+0. Thus if 7(J)CR,
then t(J) is an essential two-sided ideal of RC.

Proof. By assumption, t(x) = ¥ a,,x%b,, with both {a;,} and {b;,} bases of B. Thus
for some i, b;;q+#0 and it follows from Lemma 3.4 that the trace form 7T(x) = 1(x)q
does not vanish on J. Similarly gz(x) does not vanish on J. Finally since a,,,b,,€ B
and ge G, it is clear that 7 is an (R®, R®)-bimodule homomorphism. Thus 7(J) is
an (R® RY)-bimodule. In particular, if 7(J)C R, then 7(J) is a two-sided ideal of
RC by Lemma 2.4. Furthermore it is essential, as a right or left ideal, since its left
and right annihilators in RS are zero.

Proposition 4.5. Let I be a nonzero ideal of R.
() If ge Q\O, then INRC)q+0 and g(INRC)#0.
(ii) If f is a G-centrally primitive idempotent of B, then there exisis re I RE
with r=rf+0.
(iii) There exists re INRC with anng(r) =0.

Proof. (i) By Lemmas 2.4 and 2.5 there is a trace form t(x)= Y a,v*b,, and a
nonzero ideal J ¢ I with 7{/) c INR®. Now apply Lemma 4.4.

(ii) By Lemma 1.2 there exists a nonzero ideal K of R with KfC R so (IK)fc /.
Since IK+0 we conclude from (i) above that for some selK NRS we have
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r=sf+0. Observe that r=rf+0 and that re IKfC I. Finally since both s and f are
centralized by G, we see that r=sf is also fixed by G.

@iii) Let f;,f2» ..., fi be all the G-centrally primitive idempotents of B and, by
(ii) above, we choose for each i an element r;ef NRC with r,=r,f;#0. Note that
for i#j, rif;=rifif;=0. Thus if r=X{r;, then reINRY and rf;=r;f;#0. But then
anng(r) is a G-invariant two sided ideal of B containing no G-centrally primitive
idempotent and this clearly implies that anng(r)=0.

As was pointed out in Section 2, nontrivial trace forms exist under more general
circumstances than B being semisimple. In particular, the following result, where
B is merely assumed to be finite dimensional over C, is easily proved using Lemma
2.3 and the above arguments.

Lemma 4.6. Suppose only that there exists a nontrivial B-module homomorphism
6:B*—B. If I is any nonzero ideal of R, then INRS#0.

5. The bimodule property

We start by considering another important property of R¢, namely the bimodule
property. This is stated formally in the following few results. Informally it asserts
that if M is an (R, R%)-subbimodule of Q, then M 2 Ie for some nonzero ideal I of
R and for e an idempotent of B which is as large as possible. Again G is assumed
to be an M-group with B the algebra of the group.

Lemma 5.1. Let M be an (R, R®)-subbimodule of Q and let e be an idempotent of

B with Me+0. Then there exists b€ B and a nonzero ideal J of R with JbCc M and
be #0.

Proof. Let I and the trace form 7(x)= Y, a,,x*b;, be given by Lemmas 2.4 and
2.5. Furthermore assume that for g =1, the basis {a;;} is chosen compatibly with
the decomposition B=eB® (1 — e)B with a;, =e. Note that e+ 0 since Me#0. Then
by Lemma 2.4 again, for g=1 the basis {b;;} is compatible with B=Be® B(l —e)
and b, € Be.

By assumption there exists meM with 0#£me=ma,,. We now consider
T(x) = m1(x). Since 7/} CR® and M is a right RC¢-module, it follows that T{I) C M.
Moreover, since M is a left R-module, we then see that any left truncation

T)= ; ri T(s,x)
also satisfies T(/) c M. In particular, if T is as given in Lemma 3.3, based on the
1, I-coefficient may, #0, then we have for some ae R, a+0

alp=TI)c M.
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Here =1}, b;;c;e B with ¢;e C, ¢;=1. Note that al #0 since R is prime. Further-
more since {b;} is compatible with the decomposition B=Be®B(l -¢) and
by, € Be, ¢, =1 it is clear that fle# 0. Finally since RM C M we have (Ral) ¢ M and
the result follows.

We now obtain the bimodule property.

Proposition 5.2. Let M be an (R, R®)-subbimodule of Q and let rg(M)=(1 —e)B
for some idempotent e of B. Then there exists a nonzero ideal I of R with M 2 Ie.

Proof. Since rg(M) is a right ideal of B, it is generated by an idempotent which we
write as 1 —e.

Now let K be the set of all elements b € B such that Jb C M for some nonzero ideal
J of R depending upon b. We claim that K is a left ideal of B. Indeed it is surely
closed under addition. Furthermore let b € K with Jb ¢ M and let 4'€ B. Then there
exists a nonzero ideal J’ of R with J’b’C R and then (JJ')(b'b)c Jbc M, so b'beK.
Observe that for any b e K, Jb ¢ M implies that Jb(1 —e) =0 and hence &(l — e) =0.
Thus we conclude that K C Be and the goal is to show that we have equality here.

To obtain the reverse inclusion, note that K=Bf for some idempotent f. If
M(1 - f)+#0, then by Lemma 5.1 applied to the idempotent 1~ f, there exists be K
with (1 —f)+# 0 and this is certainly a contradiction. Thus 1 — ferg(M)= (1 —e}B,
so e(1 —f)=0. Hence e=ef and K = Bf 2 (Be)f = Be. Since e € Be, the proposition is
proved.

Tie analogous result for (RS R)-bimodules holds with an almost identical
proof. Indeed in the analog of Lemma 5.1 we merely use right truncation of ihe
trace form T(x)=t(x)m and then apply Lemma 3.4. For Proposition 5.3, K is of
course defined as the set of be B with bJ C M. Here to show that X is a right ideal
of B we require the additional observation, from Lemma 1.2, that if # € B, then
b'J' ¢ R for some nonzero ideal J' of R. We then have

Proposition 5.3. Let M be an (RS, R)-subbimodule of Q and let lg(M)=B(l - )
Jfor some idempotent e of B. Then there exists a nonzero ideal I of R with M Jel.

We will view the conclusions of the above two propositions as saying that R°
satisfies the bimodule properties with respect to B. Here of course B= CQ(RG) by
Proposition 4.1.

Now let S be a subring of R with S2 R®. Then we recall that the Galois idem-
potent condition for S is given by

[GI Let e be an idempotent of B with eS(1 —¢)=0. Then there exists an
idempotent fe Z=Cy(S) with Be= Bf.
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As we now see, this condition is intimately related to S satisfying the bimodule pro-
perty with respect to Z=Cg(S). First we have

Lemma 5.4. Let H be an M-subgroup of G. Then S=R" satisfies [GI].

Proof. Let e B be an idempotent with eRY(1-e)=0and set M =ReR" so that M
is an (R, Rf)-subbimodule of Q. By Proposition 5.2, R satisfies the bimodule
condition with respect to Z =CQ(RH ). Thus there exists an idempotent fe Z with
rz(M)=(1-f)Z and M2 If for some nonzero ideal I of R. Now M(1-/)=0
and ee M implies that e(1-f)=0 so e=ef and BeC Bf. On the other hand,
eRf(1-e)=0 implies that [f(1 —e)c M(1-e)=0. Thus f(1-€)=0 so f=fe and
BfC Be.

The next two results show conversely that [GI] implies the bimodule property.
Here we do not need to assume that Z is semisimple.

Lemma 5.5. Let S be a subring of R containing RC and suppose that S satisfieS'
[GI]. If M is an (R, S)-subbimodule of Q, then there exists an idempotent fe Z =
Co(S) with rz(M)=(1-f)Z. Furthermore for any such f, there exists a nonzero
ideal I of R with M2 If.

Proof. Since S2 RY, M is also an (R, R®)-bimodule. Thus by Proposition 5.2 there
exists an idempotent ee B with rg(M)=(1-¢e)B and lec M. But M is a right S-
module and M(1 —¢&)=0 so IeSCM and leS(1 —e)=0. Thus eS(I —e)=0 and by
condition [GI] there exists an idempotent f€ Z with Be=Bf. Hence also (1 —e)B=
(1 -f)B and therefore

r,(M)=13(M)NZ=(1-f)BNZ=(1~f)Z.

Now let f’ be any idempotent of Z with r,(M)=(1-f")Z. Then (1-f)Z=
(1-A)Z so

(-f)B=01-f)B=(1-e)B=r5(M)
and by Proposition 5.2 applied to f’ we have Jf’' C M for some nonzero ideal J of R.

The (S, R)-bimodule analog follows similarly. Indeed we merely apply [GI] with
e replaced by 1 —e and we denote the resulting idempotent in Z by 1 —f. We then
obtain

Lemma 5.6. Let S be a subring of R containing RC and suppose that S satisfies
[GI). If M is an (S, R)-subbimoduie of Q, then there exists an idempotent fe Z =
Co(S) with (M) =2Z(1-f). Furthermore for any such f there exists a nonzero
ideal I of R with M2 fI.
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Finally it is interesting to observe that [GI] implies a weakened version of semi-
simplicity for Z.

Lemma 5.7, Let S be a subring of R containing R® and suppose that S satisfies
[GI). Then Z=Cy(S) is a p.p.r. (that is, all principal ideals of Z are projective).
Furthermore S is semiprime.

Proof. Let ae Z and observe that M= Ra is an (R, S)-subbimodule of Q. Thus by
Lemma 5.5, r,(M)=(1-f)Z for some idempotent f of Z. Therefore r (a)=
(1-/£)Z and we have aZ=2Z/r,(a)=fZ. so aZ is projective. Similarly using Lemma
5.6 we see that Za is projective. '

Now let N be an ideal of S of square zero. Then AR is an (S, R)-bimodule so,
by Lemma 5.6, /,(NR)=Z(1 —f) and NR 2 fI for some nonzero ideal / of R. But
N2=0, so NfT=0 and hence Nf=0. Since fe Z commutes with N we obtain
(1-f)N=0 and fN=0, so N=0 and S is semiprime.

6. Bimodule truncation and homogeneity
It is again necessary to consider the truncation of trace forms. Let S be a subring
of R and let
T(X) = Z a,-x”’b,

be a trace form with a;,0;€ Q and o,€ Aut R. If r,eR, s, €S, then

T(x)= ; T(xry)sy

is called a (right) (R, S)-truncation of T. Notice that
T(X) = Z a,—x”’b-,- with b~, = Z r,?’b,-sk.
i k

For convenience we let the support of T be given by Supp T'={i|#;#0}. Then
clearly Supp 7'c Supp T.

In order to effect this truncation, we must be able to deal with certain identities
satisfied by S. For example, if e is an idempotent of B then the condition {Gl]
enables us to handle identities of the form

es=ese for all seS.
On the other hand, automorphisms are handled by the Galois homogeneity con-

dition for S which is given by

[GH] Suppose be B\ 0, ge G and bs=s8b for all se S. Then g = hg, where h
centralizes S and goe GNInn R.
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Lemma 6.1. Let H be an M-subgroup of G. Then S=R" satisfies [GH].

Proof. Suppose b and g are as above and apply Lemma 4.2 with g=q¢'=b, 6=¢
and G=H. Then by that lemma, g =hw for some he H and welnn R. But g,he G
so we conclude finally that we GNInn R.

We now proceed with the truncation. The hypothesis (i) below on the elements
o; clearly replaces the cuter hypothesis considered in Secticn 3.

Lemma 6.2. Suppose that S is a subring of R containing R® and satisfying [GH]
and [Gl). We set H=GN %(R/S) and Z=Cg(S). Now let T(x)=Y,a;x?b; be a
trace form with by#0, ao=1 and assume that for each i

(1) 0,€G and if ;€ HGNInn R), then o;€ H.

(ii) b;€ Qf; for some primitive idempotent f; of Z.
Then there exists a nonzero ideal J of R and a trace form T(x)= Y, a;x%z; such
that T(xj) is an (R, S)-truncation of T for all j € J. Furthermore z; € Zf;, 7,=/; and
if 2;#0, then o;€ H. Finally if jeJ and jfyeJ, then T(xjfy)=T(xj).

Proof. We follow the right analog of the argument in Lemma 3.1. Again the a,’s
merely play the role of place holders. Thus the ideal J and the elements z; € Z will
depend only on the b,’s and g;’s. Note that S 2 R satisfies [GI]. Thus by Lemmas
5.5 and 5.6, S satisfies the bimodule condition with respect to Z. We will freely use
this fact throughout the remainder of the proof.
Suppose
T(x)=Y Txr)s= Y a,x°b;

is any truncation of 7. Then b;=Y, rib;s;. But b;e Qf; by (ii) and f;€ Z cen-
tralizes S so we conclude immediately that b; € Qf;. In other words, hypothesis (ii)
is inherited by ail truncations of T.

For_leach i there exists a nonzero ideal L; of R with L;b;CR. Thus, if L=
ﬂ,. L #0, then L%b;CR for all i. Furthermore Lby#0. Thus, if re L is chosen
with rby#0, then T(xr) is a truncation T of T with all ;e R and H,#0. We can
now assume that 7 has this property.

Let T be an (R, S)-truncation of T of minimal support size subject to by #0. We
apply the bimodule condition to M=RbyS+#0. Since byeQf, we have
M(1~f3)=0. But f, is a primitive idempotent of Z, so (1 —f;)Z is maximal among
right ideals of Z generated by idempotents. Thus rz(M)=(1-f;)Z and M 2 Jf, for
some nonzero ideal J of R.

Suppose T'(x)=Y,a;x%b; is another truncation of T with Supp T’<Supp T.
Then by definition we have by=:0. We claim that b;=0 for all i. To this end,
assume by way of contradiction that some b, #0. As above, we apply the bimodule
condition to M'=Rb, S and conclude that M’ 2 Kf, for some nonzero ideal X of R.
Observe that by Propostion 4.5(iii), there exists e KNRS c KNS with anng(f)=0.
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Since tf,€ M’, we can now further truncate 7’ and assume that b, =1f,#0. Of
course we still have by=0.

Note that f,f#0 implies that Jfyr+0 and hence Mr+0. Thus there exists se S
with byst#0. With this s, we consider

T"(x) = TO)st = T'(x(B,,5)°)
= Y aix%(b;st - (6,5 7b;)

— G' ”
= Z ax bi .
i

Since Supp 7'¢ Supp T we have Supp 77 ¢ Supp 7. Furthermore at i =n,
b, =b,st - b,sb, =b,st - b,stf,=0

since f, commutes with st and b, f,=5,. On the other hand, at i=0, since b, =0
we have

bg=505t¢0

by the choice of s. But then Supp 7" <Supp 7, since b, =0, and b; #0, so this con-
tradicts the definition of 7. We have therefore shown that if T’ is anv (R, S)-
truncation of T with Supp 7’ < Supp 7T, then Supp 7' =9.

Recall that M= RbyS c Jf, for some nonzero ideal J of R. Thus for each jeJ
there exists a truncation 7;(x) of T with

T/(0) = ¥ a.x°b)(j)

and by(j)=jfo. In fact T} is unique since if 7; and T;” are two truncations of T
with the same 0-coefficient jfy, then 7; — T;" is a truncation of 7" with smaller sup-
port than that of T. By the above, all right hand coefficients of T/ — T must there-
fore be zero and hence 7 =T".

Thus for each i, b,: J—R is a well-defined function. It is surely additive but it
is not a left R-module homomorphism. Indeed by comparing 7}'(.\'r) and T,;ﬁ.\') we

see that
bi(rj)=rb;(j).

But then the composite map (b;)7" ':J=R is an R-module homomorpkk\ism and
hence represents an element g; € Q. Therefore for all je J we have (b))" (j) =/q,,
sO

bi())=j"q7 =)z

where we have set z;=¢/ € Q. Observe that z,=f;, since by(/) =jf, by assumption.
Furthermore, if T(x) is defined by T(x) =}, ;x%z;, then for all jeJ

Txj)=Y aix®j%z;=T;(x)

is a truncation of T.
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We note that, if jeJ and jfyeJ, then T;(x) and Tj(x) have the same
0-coefficient jfy. Therefore these trace forms are identical and hence we have
T(xifo) = T(xj).

It rem.ains to study T(x). Let se S. Then by comparing T;(x)s and Tj(x), using
Jfos=Jsjy, we obtain

Foiz;s=(J8)7z;=j%s"z;.
Since this holds for all jeJ, we then have
z;s=5%z; for all seS.

Observe that S2 RS and o;€ G so we have z;€ Co(R®) =B by Proposition 4.1.
If z;=0, then surely z; € Zf;. Now suppose z; #0. Then since S satisfies the Galois
homogeneity condition [GH]} we conclude from the above identity that
o;€ HGNInn R). Thus by hypothesis (i), this implies that o;€ H. Hence s=5%
and then z;€Cpg(S)=Z. Finally J%z;CQf; implies that J%z;(1-f)=0, so
zi(1-f;}=0 and we conclude that z;=z;f; € Zf;. This completes the proof.

7. Galois subrings

In this section, we obtain necessary and sufficient conditions for an intermediate
ring to be a Galois subring. Again R is prime and G is an M-group of automor-
phisms with Gy=GNInn R. We start by constructing a convenient trace form.

Lemma 7.1. Let SO R® and set Z = Cg(S)and H={geG ] g fixes S} =GN %(R/S).
If f is a primitive ic>mpatent of Z, then there exists a trace form ©(x)= Y, a;x®b,,
a nonzero ideal I of R and a transversal A for G, in G with the following
properties.
(i) by=/f, go=1, tI)C RC.

(ii) For all i, g;e A and b; € Qf; for some primitive idempotent f; of Z.

(iii) If g;e HG,, then g;€ H.

(iv) If ge A, then »/(a,-lg,:g} is a C-basis for B.

Proof. We can clearly choose a transversal A for G, in G with 1eA and
ANGyHC H. For this A, let 7(x) = i a;, x2b,, and I be given by Lemmas 2.4 and
2.5. Then certainly (iii) and (iv) are satisfied for this r and we have 7(J) ¢ RC. It re-
maius to suitably modify the elements big.

Let fi +f5+ -+ f;,=1 be a decomposition of 1 into orthogonal primitive idem-
potents of Z with f;=f and let {d,,d,,...,d,} be a C-basis for B compatible with
B=Bfi®Bf,®---®Bf). Furthermore assume that d,=f;=f. Thus each d;e Qf;
for some i'e {1,2,...,k}. Now fix ge A. Since {b,-g|i} is a C-basis for B, we can
write by, = ¥ c;a; with the C-matrix [c;;] nonsingular. Since C is central in O, we
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observe that for any xe Q

Z aigxgbig = Z a,-gxg< E ('Udj>
i i J ,

= ; (Z aigcij)xgdj = L apx*d
i J

where a;, = ¥, a,,c;;. But [c;] is nonsingular so {a,,|/j} is also a C-basis for B.

Finally by making this basis change for each ge A, we obtain a trace form
=%, a;, x%d; with all the necessary properties. The result follows by relabel-
ing the index of summation.

We now come to a key ingredient in characterizing Galois subrings.

Lemma 7.2. Let G be an N-group of automorphisms of the prime ring R and let
R 2 S2RC with S satisfying [Gl] and [GH). Assume in addition that Z = Cp(S) is
spanned by units and set H= %(R/S). Then Z is the algebra of the group of H.
Furthermore S has an ideal K which is a right ideal of R™ with lo(K)=1o(K)=0
and witn KR and RK containing nonzero ideals of R.

Proof. Clearly R”2 5 and, in view of Theorem 4.3, HC G.

Let f be a primitive idempotent of Z=Cg(S). We first show that there exists a
right ideal K of R with K¢ S and Kf+0. To this end, let 7(x) and / be given by
the preceding lemma. Since S satisfies [GI] and [GH] we can apply Lemma 6.2 to
this trace form. Thus there exists

T(x)= Y a;x¥z

as described in that lemma and a nonzero ideal J of R such that, for each j e J, T{x/)
is an (R, S)-truncation of 7. Set K= T(lJ).

For each jeJ we have T(xj)= Y, t(xr;)s; for some ryeR, sy€S. Thus since
(/)c RO ¢S, it follows that T(/j)C S and hence that K= T(/J)C S. By assump-
tion, Z is spanned by units and each such unit gives rise via conjugation 10 an
element of G which centralizes S. Thus conjugation by each such unit is an element
of H, so Z is clearly the algebra of the group of H and therefore Z centralizes RH.
Furthermore, by Lemma 6.2, each z;€ Z and if z;#0, then g;€ H. We conclude
from this that T:ZJ—S is a right R¥-module homomorphism and therefore that K
is a right ideal of Rf. Furthermore observe that Kf=T(/J)f and that
Tx)f= ¥ a;x%z,f. Since zof=f#0, it follows immediately from the properties of t
and Lemma 3.5 that Kf=T(J)f+#0.

We can now quickly prove the result. Let X be the sum of all right ideals of RY
contained in S. Then K is certainly a right ideal of R¥ contained in S and K is a
2-sided ideal of S since SK also has this property. Let M = RK so that M is an (R, §)-
bimodule contained in Q and rg(M)=ry(K). Since rz(K) contains no primitive
idempotents of Z by the above, we conclude from Lemma 5.5 that rz(M) =0 and
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that M contains a nonzerc ideal of R. Thus ro(K)=rp(M)=0. Since /;(K)=
r,(K)=0, a similar argument applies to KR and the lemma is proved.

We remark that since Z is a finite-dimensional C-algebra, it is almost always
spanned by its units. The only exceptions occur when C=GF(2) and Z has a homo-
morphic image isomorphic to GF(2) ®GF(2). The Galois centralizer condition for
S CR asserts

[GZ] If Z=Cpg(S), then Z is a semisimple algebra spanned by its units.
With this we can strengthen the preceding lemma and obtain

Proposition 7.3. Let G be an N-group of automorphisms of the prime ring R and
let S2 RC satisfy [GZ], [GI] and {GH]. Then H= %(R/S) is an N-subgroup of G
with algebra of the group Z=Cg(S). Furthermore S contains a two-sided ideal K
of RH with ro(K)=1,(K)=0.

Proof. By Theorem 4.3 we have HC %(R/R®)=G and hence [H: HNInn R] < co.
Furthermore, by the previous lemma, Z is the algebra of the group H. Hence by
IGZ), Z is semisimple and H is an N-subgroup of G.

In addition, by Lemma 7.2, S contains a right ideal X of R" such that KR2J
a nonzero ideal of R. Now let 7 be a trace form given by Lemma 2.4 for the N-group
H and let I be the ideal, given by Lemma 2.5, with 7(/) ¢ R¥. From JC KR we
have JIc KI and hence 7(JI)C 7(KI). But 7 is an (R”, R")-bimodule homomor-
phism and X is a right ideal of R¥ so

(JI)cK-t()cK-RYcS.

Finally, by Lemma 4.4, 7(JI) is a two-sided ideal of R¥ with zero annihilator in Q.

It is now a simple matter to prove Theorem B. Let us recall the remaining Galois
subring condition for SC R, namely the canceilation property.

[GC] Suppose K is an ideal of S with rg(K)=0. If re R with Krc S, then
res.

Theorem 7.4. Let G be an N-group of automorphisms of the prime ring R and let
RCSCREC. Then S is the fixed ring of an N-subgroup H of G if and only if S
satisfies [GZ], [Gl], [GH] and [GC].

Proof. Suppose first that S=R* for some N-subgroup H of G. Then Z= Cp(S) is
the algebra of the group of H, by Proposition 4.1, and therefore [GZ] holds. Fur-
thermore Lemmas 5.4 and 6.1 imply that S satisfies [GI] and [GH] respectively.
Finally let K be an ideal of S with rg(K)=¢ and suppose KrC S. If he H and ke K,
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then
kr=(kr)" = k"r" = kr"

so r—r"erg(K)=0. We conclude therefore that re R =S and § satisfies [GC].

Conversely suppose S2RC satisfies the four Galois conditions and let
H= 9(R/S). Then by the preceding proposition, H is an N-subgroup of G and §
contains a two-sided ideal X of R¥ with rz(K3=0. In particular, if re R, then
Krc Kc S, so [GC] implies that re S. We conclude therefore that S=R" and the
theorem is proved.

Since the properties of the ideal K of Proposition 7.3 are right-left symmetric, it
is clear that [GC] could be replaced in the above by either of the following
conditions.

[GC,] Suppose K is an ideal of S with /x(K)=0. If re R with rKcS, then
res.

[GG,] Suppose K is an ideal of S with rg(K)=1/4(K)=0. If re R with rKCS
and KrcS, then reS.

8. Correspondence theorems

As an immediate consequence of Theorems 4.3 and 7.4 we obtain the main cor-
respondence theorem.

Corollary 8.1. Let G be an N-group of automorphisms of the prime ring R. Then
the maps H— R and S— %(R/S) yields a one-to-one correspondence between the
N-subgroups H of G and the intermediate rings S2 R which satisfy [GZ), [Gl].
[GH] and [GC].

While the above does indeed characterize Galois subrings, the verification of the
four Galois conditions is frequently tedious. However in certain special situations
many of these conditions are automatically satisfied. We consider some of these
now and continue to formulate the results as correspondence theorems.

We start with the X-inner case. Here [GH] is clearly always satisfied so we have

Corollary 8.2. Let G be an N-group of automorphisms of the prime ring K and sup-
pose that G is X-inner. Then the maps H—R" and S— 4(R/S) yield a one-1o-one
correspondence betweex the N-subgroups H of G and the intermediate rings S 2 R¢
which satisfy [GZ], [GI], and [GC].

Next suppose that B, the algebra of the group, is a domain. Then since 3 is a
finite-dimensional C-algebra, it is a division ring. In particular, {GZ] and {Gl] are
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now immediate. Furthermore suppose be B\0, ge G and bs=s%b for all seS.
Then b is a unit of B so conjugation by b is an element goe GMNInn R. Thus for all
ses s=b"'s8b =58,

so ggo=he %(R/S) and [GH] holds. In particular, this applies to the X-outer case
where we have

Corollary 8.3. Let G be a finite group of X-outer automorphisms of the prime ring
R. Then the maps H—R" and S— 4(R/S) yield a one-to-one correspondence be-

tween the subgroups H of G and the intermediate rings S 2 RC satisfying [GC].

A subring S C R is said to be an anti-ideal if sre S for s€ S\ 0, re R implies that
res.

Corollary 8.4. Let R be a domain and let G be an N-group of automorphisms. Then
the maps H—R™ and S — %(R/S) yield a one-to-one correspondence between the
N-subgroups H of G and the anti-ideals S 2 RS of R. Moreover B is a division ring.

Proof. We first observe that B is a domain. Indeed suppose a,be B\ 0. Then by
Lemma 1.2 there exist nonzero ideals 7, J of R with 0#laC R and 0#bJCR. Bui
R is a domain, so (Ja)(bJ)#0 and hence ab#0. Thus B is in fact a division ring.

Now suppose S2 RC is an anti-ideal of R. Then certainly S satisfies [GC] and
thus, by Theorem 7.4, we have S=R" for H= %(R/S). Conversely suppose S=R"
and that sre S with se S\0, reR. If h<H, then

sr=(sr)f =s"r =sr*

and since R is a domain we have r=r". Thus re R=8 and S is an anti-ideal.

ct a more general class of intermediate suormgs which automaticaiiy
c o

ings with Z simple. For this an d later applications,
require the ollowmg wo lemmas.

Lemma 8.5. Let A, A, be simple Artinian rings and let V be a nonzero (A, A,)-
bimodule. Then there exists ve V with l4,(0)=0 or r,(v)=0.

Proof. Let U be the unique simple left 4,-module and suppose that the regular
module 4 A4, is a direct sum of n copies of U. Now 4 V is a direct sum of copies
of U and suppose first that at least n such copies occur. Then 4,V contains a copy
of 4,4, and if v generates this submodule, then l4,(v) =0. On the other hand, sup-
pose 4 V is a direct sum of less than n copies of U. Then 4,V is a homomorphic
image of 4, A, and is therefore a cyclic 4;-module. In this case, ¥'=A,v for some
ve V. Thus clearly r,4,(v)=14,(V) is a two-sided ideal of the simple ring 4, and
since V#0 we have r4,(v)=0.
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Observe that in the above, the hypothesis on A, can be replaced by V,, being
faithful.

Lemma 8.6. Let S, S, be subrings of R containing R and let be B with S,b = bS,.
(i) Let S, satisfy |Gl] and let e, be an idempotent of Z,=Cg(S,) with b=e,b. If
I7,¢,(b) contains no nonzero idempotents, then ly(b)=1y(e;).
(i) Let S, satisfy {Gl] and let e, be an idempotent of Z, = Cg(S,) with b= be,. If
I.,z,(b) contains no nonzero idempotents, then ry(b) =ry(e,).

Proof. We consider (i). First observe that b=e,b yields /y(e,) C{y(b) and hence
Z\(1-e)C7(H). Now let M=S§bR=bS,R=bR. Then M is an (S, R)-bimodule
contained in Q and

Iz, () = l7,(0) = Z)(1 — &) D10, (D).

Since S, 2 R satisfies [GI], we conclude from Lemma 5.6 that /, (M) is generated
by an idempotent. Thus the hypothesis on [/, (d) yields /;,(b)=0 and
I(M)=Z,(1-¢,). Lemma 5.6 now implies that M 22/, for some nonzero ideal
I, of R. Since lo(b)M =0 we conclude therefore that lo(b)e; =0 and we obtain the
reverse inclusion /5(b) Cly(e,). Part (ii) follows similarly.

It is now convenient to introduce a strengthened Galois centralizer condition,
namely

[GZ'] If Z=Cgx(S), then Z is a simple algebra, hence spanned by its units.

Lemma 8.7. Let G be an N-group of automorphisms of the prime ring R and let
S 2 RC satisfy [GZ'] and [Gl). Then S satisfies [GH].

Proof. Let ge G, set V= {ve,BI vs=s8y for all s€ S} and assume that ¥ #0. Then
V is surely a (Z¢, Z)-bimodule and hence, since both Z and Z¢ are simple by
assumption, Lemma 8.5 applies. In particular there exists beV with either
l76(b)=0 or rz(b)=0. Furthermore bS=S8%b and both S and S? satisty [Gl].
Hence, by Lemma 8.6, with e; =e,=1 we conclude that either /(b)=/y(e,) =0 or
ro(b)=rg(e;)=0. But B is a finite-dimensional C-algebra so either conclusion im-
plies that b is a unit of B. Now G is an N-group, so conjugation by b€ B is an ele-
ment goe GNInn R. Thus for all se S

s=b"s8b =5,
s0 ggo=he Y9(R/S) and [GH] holds.
We say that G is an F-group of automorphisms of R if G is an N-group whose

algebra of the group B is simple. We can now obtain anotlier correspondence
theorem of interest.
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Corollary 8.8. Let G be an N-group of automorphisms of the prime ring R. Then
the maps H—R™ and S— %(R/S) yield a one-to-one correspondence between the
F-subgroups H of G and the intermediate rings S 2 RS which satisfy [GZ'], [G]]
and [GC].

Proof. Let H be an F-subgroup of G and set S=R". Since Z=Cg(S) is the
algebra of the group H by Proposition 4.1, it follows from Corollary 8.1 that §
satisfies [GZ’'], [GI] and [GC]. Conversely if S 2 RY satisfies these conditions, then
it also satisfies [GH] by Lemma 8.7. Hence by Corollary 8.1 again, S=RH with
H= %(R/S) an N-subgroup of G. Sincc the algebra of the group H is the simple
ring Z, we conclude that H is an F-subgroup of G.

Finally we consider a rather special situation.

Lemma 8.9. Let G be a finite group of X-outer automorphisms of the simple ring
R and let tG(x)=Y . x®. Then R® is simple if and only if 1€ 15(R).

Proof. Observe that t=15 is an (RS RY)-bimodule homomorphism and hence
7(R) is an ideal of RC. Thus 1 e z(R) if and only if 7(R)=RC®. Now suppose R is
simple. Since 7(R)#0, by Lemma 3.5, we have ©(R)=RC. Conversely suppose
7(R)=RC and let K be a nonzero ideal of R®. Then KR is a nonzero (RS, R)-
bimodule contained in R and hence, since B=C, it follows from Lemma 5.6 that
KR contains a nonzero ideal of R. But R is simple, so KR=R and hence R®=
7(R) = 1(KR) = K1(R) C K. Thus R€ is simple.

Corollary 8.10. Let G be a finite group of X-outer automorphisms of the simple ring
R and let 16(x)=Y, ;X5 If 1€1G(R), then the maps H—R" and S— 4(R/S)
yield a one-to-one correspondence between the subgroups H of G and the in-
termediate rings S2 RC. Furthermore, each such S is simple.

Proof. Let H be a subgroup of G and let Q be a left transversal for H in G. Then
clearly ‘

=Y ¥ XWh=TH< Y x‘“).

heH weQ we

Thus since 1€ 75(R) we have 1€ 7,(R) and hence, by the previous lemma, R is
simple.

Now let S2 RY be any intermediate ring and set H= %(R/S). Since G is X-
outer, we know that S satisfies [GZ], [GI] and [GH]. Thus, by Proposition 7.3, §
contains a nonzero ideal of R”. But R is simple, by the above, so we conclude
that S=R*#, In view of Corollary 8.3, this completes the proof.

Observe that the hypothesis 1€ 75(R) is trivially satisfied if |G| ! eR.



Galois theory of prime rings 165
9. Prime ideals of the fixed ring

There are numerous applications of these methods to the study of the relationship
between R and the fixed ring RC. We just discuss a few and we start with a rather
amazing observation. Again R is a prime ring and G is an M-group of
automorphisms.

Proposition 9.1. Let K be the set of elements re R such that rR is contained in a
finitely generated right RC-submodule of R and Rr is contained in a finitely
generated left RC-submodule of R. Then K is a nonzero two-sided ideal of R.

Proof. For each be B, define

Ly,= {reRIerg Y r;RY for some n and r;e R{.
i=1 J

If rRbC Y7r;RC and se R, then srRbC ¥/ sr;RC. It now follows easily that L, is a
2-sided ideal of R. The goal is to show that L, #0. To this end, define

W={beB|L,#0}.

Then 0e W and W is closed under addition since clearly L,NL,CL,., fora,beB.
Furthermore suppose be W, ae B and let 0#J be an ideal of R with Jac R. If
re L, then, since rJab C rRb, it follows that r/C L. Thus L, 2 L,J#0, soabe W
and W is a left ideal of B. In particular, it is a C-subspace and we wish to show
that W=B.

Suppose by way of contradiction that W#B. Let t and / be given by Lemmas
2.4 and 2.5. Furthermore, assume that the basis {b;,} is chosen compatibly with
B=W'@® W where W’ is any complementary C-subspace and with b;; € W’. Then
a;, #0 and we left truncate 7 based on the 1, 1-coefficient. By Lemmas 3.1 and 3.3,
there exist r;, s, € R such that

duxB=Y ret(siX)
s

for some d;; € R\0 and some f=Y c;b; with ;e C, ¢,=1. But 7(I)C R® so this
implies that

d]llﬂg ;rkRG.

Hence 0#d,,/C Ly, by definition, and therefore S € W. However, sincec, =1, gin-
volves by; and this contradicts the choice of basis.

We have therefore shown that W=B8 so 1e W and L =L,+#0. Similarly using
Lemmas 3.2 and 3.4 we can show that

L'= {reR

Rrc ¥ RCr; for some n and rieR}
i=1

is also a nonzero 2-sided ideal of R. Since X=LNL’, the result follows.
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For each G-centrally primitive idempotent f of B let Py=anngs(f). Clearly
each P; is an ideal of RY.

Lemma 9.2. With the above notation we have
(i) anng(Py)=Bf.
(i) If L is an ideal of RC properly containing Py, then anng(L)=0 and hence
both LR and RL contain nonzero two-sided ideals of R.
(iii) Py is a prime ideal of R® and annge(Py)#0.

Proof. Observe that if L is a subset of R™, then anng(L) is a G-invariant two-sided
ideal of B
L3N They A1 laine ame DAV DL N lar 7 laa any Athae £ nrantrally marimitiye
1) Dy UCIINition, anng\ry) 2 0j.INOW i€t J U aily Ouiti u-tChitdaly piiiitive
idammnntant Af B Rvu Pranncitinn 4 8411 with T— R there avictec re G with
IUVIIIJULVIIL U1 &7, LIy 1 IUPUOILIVIL TTeJ\1dyy VVILIL 2 ANy LUWINW  WAROLY 7 T av VY ELAR
r=rf"#0. Since f'f=0 we have rf=rf'f=0dnd re P;. On the other hand rf’'#0 so

N

Sf'é¢anng(Py). Since B is semisimple and anng(P;) is a G-invariant 2-sided ideal,
this clearly implies that anng(Py) = Bf.

(ii) Let L>P;. Then anng(L)C anng(P;) =Bf by the above. If anng(L)=Bf,
then L Cannge(f)=P;, a contradiction. Thus since Bf is G-simple, we have
anng(L)=0. It now follows that the (R R)-bimodule LR satisfies /5(LR)=0, so
LR contains a nonzero ideal of R by Propositicn 5.3. Similarly, by Proposition 5.2,

RL contains a nionzero ideal of R

aQ
]
=]
-
=]
=
=]
1]
>
ot
-
l
[~
[ 8]
N
>
-
=1
(¢}
=

O0=L,L,f=L,fl., and thus (RL,)f(L,R)=0. It follows that RL, and L,R cannot
Ltk ~modain nmmrerm tdeale ~f D Thoc bl £33 2bhmin alébhae 7 D o~ T _ D and
both contain NONZEro iaeals or K. 1nus by (1i) above CIthner Ly =1y O Ly=ry and
D _ic nrima Hinally hy Pranncitinn 4 §031) again with 7T— P thara avicte r = G with
i j 10 pl 1311 i IIIIJIIJ v s lUl}UDlllUll "'cJ\l.l’ u5a1u, YYLILAL 4 = 4%y LIIVEIN VALOLWLD 7T TN ¥Yivil
r=rf=+0. Since rP.=rfP.=0 and P,r=P.fr=0. we conclude that reann.c(P;
J#FU. omce rPy=rfFy,=0 and Fr=1=ryj U, we conclude that re annge(ry).
As an immediate consequnce we have
Pranncitinn 0 2 G ic cominrimo nnd tho mismihor Af srisimmal sssminn Af thio winme jo
A B UPUIBREAULL JauJe AN I ICTILRE/I EITLT Witle LT riumrniuce Pj oTTELrLerniue lJl"llC Uj 'llls [AS
nreciselv eaual to the number of G-centrallv nrimitive idemnatontc of B I..aood 1110
- 7 ~ Lo NS aTRw sy 1254 %2 V) N wNTReT “llJ l.l' STFSESV L iub'li‘lvl&'.iu VJ AFe ATLIAVGLE 3T O
minimal primes of RS are precisely the ideals P;. Furthermore the latter are all

distinct and ﬂfPf=0

Proof. We have already observed above that the ideals Py are prime. Furthermore
since 1€ B is a sum of G-centrally primitive idempotents of B, we conclude that
[ ]fPf—O This implies that RY is semiprime and that its minimal primes are
precnsely the minimal members of the set {P;}. But by Lemma 9.2(i), if P;C Py,

annB(Pf )CannB(Pf) Bf and hence f’=f. Thus the primes P; are in-
ie and hence they are aii minimali.
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Proposition 9.4. Let f be a G-centrally primitive idempotent of B. Then R is (right
or left) primitive if and only if R®/P, is (right or left) primitive.

Proof. The argument is symmetric, so we will consider only right modules.
Suppose first that R is primitive and let ¥V be a faithful irreducible right R-
module. Let K be the ideal defined by Proposition 9.1 and choose re K, r#0. Then
by assumption, rRC Y¥r,RC. If veV is chosen with vr#0, then since V is ir-
reducible we have ‘
V=@r)Rc ¥ (vr)RC
i=1]

and we deduce that V is a finitely generated R-module.

Now note that VP,#V since rgo(Ps)#0 by Lemma 9.2(iii) and V' is faithful.
Thus since V is a finitely generated R®-module, we can choose W to be a maximal
RS-submodule of V containing VP;. We have now found an irreducible RC-
module, namely V/W, which is annihilated by P;. Finally let L=rgc(V/W) so
that L is a 2-sided ideal of R containing P;. Since VL C W we have V(RL)C W
and hence RL cannot contain a roonzero ideal of R. We conclude therefore from
Lemma 9.2(ii) that L =P, and hence that RG/Pf is a primitive ring.

In the other direction, let W be a faithful irreducible moclule for RG/R,. Then
there exists a maximal right ideal M of R® with RC/M = W. Hence P; is the largest
2-sided ideal of RC contained in M. We first show that MR R. To this end, sup-
pose R=MR and let 7(x) and / be given by Lemmas 2.4 and 2.5. Then

I=RI=MRI=MI
and since 7 is an (R® R%)-bimodule homomorphism we have
t(l) =t(MI)=Mu(I) CMRC C M.

Thus (1) is a 2-sided ideal of RC contained in M, so t(I)C P/ and t(1)f=0. Since
this cor.‘radicts Lemma 4.4 we therefore have R > MR.

We can now choose N to be a maximal right ideal of R containing MR. Then
V=R/N is an irreducible right R-module and, since NN RS = M by the maximality
of M, we see that V contains the RC submodule (RC + N)/MN=RS/M= W. Thus if
J=r1g(V), then JARC Crge(W)= P, and hence (JNARY)f=0. We conclude from
Proposition 4.5(i) that J =0 and therefore that V is a faithful irreducible R-module.
In other words, R is a primitive ring.

It follows from the above that if P; is a primitive ideal of R then so is P, for
all f’. As a corollary we obtain

Proposition 9.5. If R is simple, then RC is a finite direct sum of primitive rings.

Proof. Since R is simple, Q=R and hence BC R. In particular, if f}, f5,..., f, are
the G-centrally primitive idempotents of B, then f;€ RC and hence R® = @, f; R®.
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Furthermore from this decomposition it is clear that

P =anngs(f)) = ;@ feRC,

so fiRG=RS/P;. But R is surely primitive so each Py, is a primitive ideal by the
preceding result and hence each f;RC is primitive.

It is known that these primitive summands need not be simple [16, Example 2.8].
We close with a result needed in Section 12. It is actually true without the assump-
tion that RC is prime, using a more general definition of the Martindale ring of
quotients Qy(R) which is applicable to semiprime rings.

Proposition 9.6. Let G be an M-group of automorphisms of the prime ring R. If
RE is prime, then Qy(R®)=Qy(R)°.

Proof. Observe that G extends uniquely to a group of automorphisms of Qy(R) so
the fixed ring Qy(R)® makes sense and is an extension of the prime ring RC.

Let ge Qp(R)C and let I be a nonzero ideal of R with Igc R. By Proposition
4.5(31), INRC#0 and if g#0, then NRC)g=0. Now (/NRC)g c R and since the
left hand side is fixed by G we have (/N R%)g c RC. Thus q determines an element
of Qy(R®) and in this way we clearly obtain a homomorphism Qy(R)® = Qy(R).
Moreover this map is an embedding since if ¢#0, then N R%)g#0 and hence the
image of ¢ is not zero. We can now view Qy(R)C as a subring of Qy(R).

Now let § € Qy(R). Then there exists an ideal I#0 of RS and a left R-module

homomorphism f:7—R® which determines §. We extend f to f:RI—R by
defining

(% ’k)’k\)f= ;"k()’kf)

for r,e R, y,el. This map will certainly extend f and be a left R-module homo-
morphism provided we show it is well defined. To this end it suffices to show that
Y. ryx=0 implies ¥, r,(3.f)=0.

Let 7(x)= Y, a;x%b, be an outer trace form given by Lemma 2.4 with a;, b;€ B.
Furthermore we can assume that go=1, b;=1 and that {a; l g;i=1} is C-linearly in-
dependent. By Lemma 2.5 there exists a nonzero ideal J of R with 7(J) ¢ R®. Now
suppose Y, ry v, =0 with r, e R, y, €I and consider the truncation of 7 defined by

T(x)= Zk; r ) f) = X aix®ib;.

Since go=1, by=1 we note that by=Y, ri(y;./).
Ncw let jeJ. Then 0= Y, jry y, so since Y€ R% we have

0= 1.'< ; jrkyk) = ; T(Jjri)ye.
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But z'(jrk)eRG and f is a left R°-module homomorphism, so applying f yields
0= ‘kj t(Jr) () =T().

In other words, T vanishes on the nonzero ideal J of R. Lemma 3.5 now implies
that 0=56y= ¥, ri(»f) and f: RI-R is well defined.

Since RC is prime, Lemma 9.2(ii) implies that R/ contains a nonzero two-sided
ideal L of R. Hence f: L— R determines an element g € Qy(R). It is now easy to see
that yg=yf=ygdeRY for all yel. Thus if ge G we obtain yg®=(yq)®=yq. so
RI(g—g®)=0 and therefore ge Qy(R)°C Qy(R®). But then Kg-g)=0 yields
G=q e Qy(R%), so we have the reverse inclusion, namely Qy(R¢) ¢ Qy(R)®, and the
proposition is proved.

10. Embeddings

We now wish to study the various embeddings of a ring S2 R into R. In this
regard, the following lemma is crucial. Here R is a prime ring and G is an M-group
of automorphisms.

Lemma 10.1. Let S 2 R satisfy [Gl] and [GH] and let ¢ : S — R be an isomorphism
into with ¢ the identity on RC. If f is a primitive idempotent of Z=Cg(S), then
there exists be B, ge G such that b=f3b+0 and s8b=bs® for all s€S. Furthr-
more, if ge GNInn R, then g=1. Finally if e is an idempotent of Z with fe #(C and
if ¢ extends to an embedding ¢ :{S, e)—Q, then we may assume that b = be"'.

Proof. Let t(x)=Y,a;x¥b; be the trace form given by Lemma 7.1 for f and use
the notation of that lemma. In particular, H=GN %(R/S) and [ is a nonzero ideal
of R with 7(/) € R®. We can now apply Lemma 6.2 to this form and obtain a form
T(x) =Y, a;x*z; and a nonzero ideal J of R such that T(xj) is an (R, S)-truncation
of 7 for all j e J. Additional properties of T are listed in Lemma 6.2 and will be used
in the course of the proof.
For each subscript ¢ we define 6,: J—Q as follows. Let jeJ and write
T(xj)= X, t(xry)sx with r,eR, s, €S. Then we let
0,(j)= Zk: rflb.rs/?-
We must first show that this is well defined. Thus suppose 7(x7)= %, t(x7)3;
with 7, € R, 5, €S. Then for any yel we have
}k: t(yridse= Y T(¥Fe)3i

k

and since (/) c R® we have, applying ¢,

; w(yr,)st= ; (Y7, 3L
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In other words, the form
T = ; T(xr,)sg— Zk: UEALED) a;x%b;

vanishes on I. Let geA, the transversal for G, in G, and observe that if
g € Gog=gGy, then g;=g by assumption on 7. Furthermore {a,|g, g} is C-
linearly independent. Thus it follows from Lemma 3.5 applied to the form T(x® )
that b;=0 for all i. In particular

0="5,=Y rib,st— ¥ Fb,5¢
k k

and d, is well defined.

We now study 6, : J—Q in more detail. Since T(x(j, +/»)) = T(¢j,) + T(x/3), it is
clear that 6, is additive. Furthermore, T(xrj) can be obtained from T(xj) by replac-
ing x by xr so we have easily 6,(rj)=r¥6,(j). Observe that 6,(J)C Rb,R and for
some nonzero ideal L of R we have L#b,C R. Hence 0,(LJ)=L%0,(J)CR and by
replacmg J w1th LJ if necessary, we can now assume that 6, : J—R. Since 65 (rj) =

reé (_]), 93' is a left R-module homomorphism and there exists an element g, € @
with 6% (j)-—— J@, or equivalently

6,(j) =jg,qtg, =jg,q’ where q,= q’g, €Q.

Again, by Lemma 6.2, we have z;€ Z and if z;#0, then g;€ H. It follows from
this that T(xjs) = T(xj)s for se€ S and hence we have easily §,(js)=8,(j)s¥. Thus the
above formula for 6, yields

Jjés¥q,=0,(js)=6,(j)s’* =j¢q,s®

and since this holds for all jeJ we have s¥g,=q,s’. Moreover both g, and ¢ fix
RC ¢S, 50 g, centralizes R and hence g, € B by Proposition 4.1. Now let U#0 be
an ideal of R with UfC R and set W=JU ¢ J so that W+0 and WfC J. Observe that
for any weW, both w and wf belong to J and hence, by Lemma 6.2,
T(xwf)=T(xw). This implies that 8,(wf)=60,w), so

wg'fglql = Gz(Wt) = 01(W) = ng‘]t

and since this holds for all we W, we have f®q,=g,. Note further that g,e A so
that if g, € Gy, then g,=1.

It remains to find some 7 with g,#0. To this end, suppose that e is an idem-
potent of Z with fe#0 and that ¢ extends to an embedding ¢ : (S, e)— Q. Observe
that this condition is trivially satisfied with e= 1. Since zy,=/f, we have zpe=fe+#0
and it follows from Lemma 3.5 that the outer trace form T(x)e does not vanish on
the nonzero ideal IJ. Thus there exist yel, jeJ with T{yj)e#0. Now write
T(xj)= Y, t(xry)s; with r,eR, s eS. Then

0+ T(yj)e= ; T(yri)see.
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Thus since ¢ :(S,e)—Q is an embedding and r(yrk)eRG we have

0% Y t(yry)ste’ = Y a,y*0,))e’.
x 1

Hence for some ¢, 6,(j)e?#0 so g,e? #0.

Finally, for this ¢, set b=gq,e’ and g=g,. Since f%q,=q, we have f*b=b and
since e” is an idempotent we have be” = b+#0. Furthermore since e centralizes S, e
centralizes S¥, so multiplying the equation s¥g, =q,s? on the right by e“ yields
s8b=bs®. In particular, this implies that b centralizes R®, so be B and the lemma
is proved.

In general the question of whether embeddings ¢ : S = R are actually the restric-
tion of elements of G is closely related to the minimal primes of S and even more
so to the central idempotents of Z. In this section we will just indicate some of the
more satisfactory consequences of the above lemma. We start with the X-outer case.

Proposition 10.2. Let G be a finite group of X-outer automorphisms of the prime
ring R and let S2 RC. If ¢ : S— R is an isomorphism into with ¢ the identity on R°,
then ¢ is the restriction of some ge G.

Proof. Since B=C, we know that S satisfies [GI] and [GH]. Thus by the previous
lemma with f=1, there exists be B\ 0, g€ G with séb=bs’ for all s€ S. But b is a
central unit of Q, so we can cancel and obtain s&=s°.

Proposition 10.3. Let G be an N-group of automorphisms of the domain R and let
S2RC. If 9: S—R is an isomorphism into with @ the identity on RC, then ¢ is the
restriction of some ge G.

Proof. Since B is a division ring, by Corollary 8.4, we know that S automatically
satisfies [GI] and [GH]. Thus by Lemma 10.1 with f=1, there exists be B\ 0, ge G
with s8b=bs? for all s€ S. Since b is a unit of B, conjugation by b gives rise to an
element gy G and we have s =b"158h =58,

Proposition 10.%. 7 G be an N-group of X-inner automorphisms of the prime rin2
Randlet SO F' . fy [GI]. Suppose ¢ : S—=R is an isomorphism into with ¢ the
identity on RC. 14-n o is the restriction of some ge G if and only if ¢ extends to
an embedding ¢ : (S, Z)>—>Q where Z=Cg(S).

Proof. It is clear thzi if ¢ is the restriction of some g € G, then ¢ does indeed extend
to an embedding ¢: ¢S, Z)—+Q. Conversely suppose ¢:(S,Z)—Q exists and let
1=f,+f,+---+f, be a decomposition of 1 into orthogonal primitive idempotents
of Z. Since S satisfies [GI] and since [GH] is automatically satisfied, Lemma 10.1
applies. Indeed since G is X-inner, we conclude that for each i there exists b, € 8
with sb;=b;s? for all se S and b;=f;b;=b,f? #0.
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Now f; is a primitive idempotent of Z, so it follows that /;,(b;) contains no
nonzero idempotents. Thus by Lemma 8.6(i), since Sb;=b,5%, we conclude that
lo(b)=1o(f). Set b=by+by+ -+ b, € B and observe that bff = b, since for j+i,
b f?=b;fff?=0. Thus il gb=0 for some ge Q, then 0=gbf’=gb; and hence
0=gf; by the above. But i =Y f; so we have g=0 and b is left regular in Q and
hence invertible in B. Finally by adding the equations sb; = b;s® we conclude that
sb = bs? so s*=b"'sb. Since conjugation by b is an element of the N-group G, the
result follows.

It is clear in the above that we need only assume that ¢ can be extended to (S, Z’)
where Z’ is a subring of Z containing a full set of orthogonal primitive idempotents
of Z.

11. Embeddings and minimal primes

Again let G be an N-group of automorphisms of the prime ring R. If ¢:S—S
is an isomorphism, then surely ¢ maps the minimal primes of S to those of S. As
we will see, these minimal primes play an important role in understanding the nature
of ¢.

Lemma 11.1. Let SC R satisfy [GZ], [G]] and [GH]. Set Z=Cg(S), H= %(R/S)
and let f,, f, ..., [, be the H-centrally primitive idempotents of Z. If P;=anng(f),
then
(i) The ideals P,,P,,...,P, are the distinct minimal primes of S and

PNP,N---NP,=0.

(ii) annz(P;)=Zf,.

(iii) If f is any nonzero idempotent in Zf;, then anng(f)=P; and hence the map
s—fs yields a natural isomorphism S/P;=f8S.

Proof. By Proposition 7.3, H is an N-subgroup of G with algebra of the group Z.
Furthermore, S contains a two-sided ideal K of R =§ with r9(K)=1y(K)=0. For
each i, let P;=anng(f;) so that P;=P;NS. Note that K& P, since Kf;#0. By Pro-
position 9.3, the ideals P; are the distinct minimal primes of § and [)P;=0. Thus
certainly [|P;=0. Moreover from KF;cP,NS=P; and Lemma 9.2(i), we have
annz(P;)=annz(P;)= Zf; and hence the ideals P; are incomparible. N~ . - 2pose
s,t€ & with sSfC P;. Then sKt C F; C P; and since K is an ideal of £ ..ot contained
in P;, we deduce that s or ¢ is contained in P;NS=P;. Hen~- cach P, is prire.
Finally if f is a nonzero idempotent in Zf;, then annz(anng(f)) is an H-invariant

ideal of Z containing f so we conclude immediately that anng(f )=anng(f;)=P;
and the lemma is proved.

If e is an idempotent in a semisimple Artinian ring A, then we define rk 46, the
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rank of e, to be the composition length of eA. This is of course the maximum m
such that e can be written as a sum of m orthogonal idempotents and thus the rank
is right-left symmetric.

Lemma 11.2. Let A be a semisimple Artinian ring and let e,, e, be idempotents in
A. Suppose there exists be A such that b=e,b=be, and assume that at least two
of the three equalities | (e;) =14(b), 14(e;)=1,4(b), tk(e)) =1k 4(e2) are satisfied.
Then there is a unit ue A with b=e u=ue,.

Proof. Certainly one of the two annihilator conditions is satisfied and by symmetry
we may suppose that /4(e;) =1,4(d). Now right multiplication by b defines a left .4-
module homomorphism

1481 —’Aelb=Ab=Ab€2 gAez.

This map is one-to-one since if (ae;)b=0, then ae, e/,(b)=1,(e;) and hence
ae, =(ae )e; =0. We claim that the map is onto Ae,. Indeed if rk,(e;) =rk (e>),
this is obvious since both Ae, and the image of Ae, have the same composition
length. On the other hand if r (e;) =r4(d), then r (Ab) =r,(Ae,) and again, since
A is semisimple, we have Ab = Ae,.

Thus Ae; = Ae, via multiplication by b and by the Jordan-Holder theorem we
also have A(1 —e;)=A(1 —e,). Combining these we have an isomorphism ;4= ;4
and this of course must be achieved via right multiplication by a unit we A. Thus
we have eju=e;b=b and A(1 —e,)u=A(l1 —e,). Hence

u=lu=eu+(l-e)u=>b+a'(l —e,)

for some a’€ A and then ue,=be, =b.

Given the situation of Lemma 11.1, if e; is a centrally primitive idempotent of Z
contained in Zf;, then we define deg P; =rkze;. Since all such e; are H-conjugate,
this is well defined. Furthermore we let mult P;, the rultiplicity of P, , be the
number of distinct H-conjugates of e;. Thus clearly rk; ) ={deg P;)(mult P,) and

Z (deg P;)(mult P;) =rk(1).
We now come to the main result on embeddings.

Theorem 11.3. Let G be an N-group of automorphisms of the prime ring R and let
S, 52 RC both satisfy [GZ), [Gl] and [GH]. Suppose ¢:S—S is an isomorphism
which is the identity on RS and assume that P and P=P?® are corresponding
minimal primes of S and S. Let e be a centrally primitive idempotent of Z = Cg(S)
with Pe=0 and let f be a primitive idempotent in Ze. Similarly let & be a centrally
primitive idempotent of Z=Cgz(8) with Pe=0 and let f be a primitive idempotent
in Ze.
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(i) There exists an element g€ G such that (fs)®=fs® for all se S. Hence g ‘in-
duces’ the isomorphism ¢ : S/P—8/P via the combined map

S/P=fs—%+J§=3/P.

(i) (rkze)/(deg P)=(rkzé)/(deg P).
(iii) If either deg P=deg P or rkge=rkge, then there exists g€ G with (es)t = es’
for all se 8.

Proof. (i) By Lemma 10.1 there exists beB, ge G such that b=f%b+#0 and

_s8b=bs’ for all se S. Now b#0 so there exists a primitive idempotent f of Z with
bf#0. Since f commutes with s, we can now clearly replace b by bf and assume
in addition that bf=b. Observe that S8b=bS and both S# and 3 satisfy [GI]. Thus
since both f€ and f are primitive idempotents of Z% and Z respectively, we con-
clude from Lemma 8.6(i)(ii) that /5 (b) =15 (f*) and ry(b) =ro( f). Lemma 11.2 ap-
plied to the semisimple algebra B now implies that there is a unit ue B with
b=f%u=uf. Thus for all se S

58f8u = s8b = bs? = ufs®

and hence u~'séf%u = fs¢. But conjugation by the unit u € B corresponds to an ele-
ment g, in the N-group G, so replacing g by gg, yields (sf)¥=/s%.

Since f annihilates P, it follows that f annihilates P=P?. But all such primitive
idempotents of Z which annihilate P are in fact H-conjugate, where H= ¢(R/S).
This follows since A transitively permutes the simple components in annz(P), by
Lemma 11.1(ii), and since, within =uch simple component, primitive idempotents
are conjugate via units of Z and hence via elements of A. Thus /'=f" for some
ke H. Since /i centralizes S, we conclude that (sf)%" =(7/s?)f=75¥ and (i) follows
from Lemma 11.1(ii).

(ii) Since the primitive idempotents of eZ are all conjugate to f, we have
rkg(e) =rkz(e)- rkz(f)=deg P- rkgz(f) and similarly rk(&) =deg P- rkg(f). How-
ever, as a consequence of (i) above, we have fé=f and hence

rkg(e)/deg P=1kg(f)=1kg(f) =rkz(€)/deg P.

(ii) In view of (ii), deg P=deg P if and only if rkgz(e) =rkg(é). Thus we can
assume that the latter ranks are equal. Let ge G be as in (i) and define

V={beB|eft=b,be=b,stb=bs" for all s S}.

Then V is clearly a unitary (Z2e#, Ze)-bimodule and V' #0 since f8=f¢ V. Further-
more, Z%e® and Zé are simple Artinian rings, so it follows from Lemma 8.5 that
there exists b e B with /,s,5(b) =0 or r3,(b) =0. Again S8b=bS and both S& and §
satisfy [GI]. Thus we conclude from Lemma 8.6(i) or (ii) that either lo(B)=1p(e®)
or rg(b) =rg(é). Lemma 11.2 applied to the semisimple algebra B now implies that
there exists a unit u € B with b= efu = ue. Since conjugation by u corresponds to an
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element gye G it follows easily as in (i) that (se)®® =u"!(se)u =6s’ for all 5§
ond the theorem is proved.

Note that if ¢:S—S is given, then it is not necessarily true that deg P =deg P.
Hence this hypothesis is certainly required in (iii) above. Now suppose that Z and
Z are simple so that e=é=1. Since [GZ’] and [GI] imply [GH], by Lemma 8.7, we
obtain immediately

Corollary 11.4. Let G be an N-group of automorphisms of the prime ring R and
let S,52RC satisfy [GZ’] and [Gl). If ¢:S—S is an isomorphism which is the
identity on RC, then ¢ is the restriction of some ge G.

We will consider a number of exampies in Section 13 which show that the above
results, and in particular Theorem 11.3(iii), precisely indicate the extent to which ¢
agrees with elements of G. One can of course assume a homogeneity condition on
¢ to force the group elements g so obtained, for each centrally primitive idempotent,
to agree appropriately. However we will not pursue this idea further except to peint
out in the following lemma that the group elements need only agree modulo
X-inners.

Lemma 11.5. Let S, S2 R both satisfy [GZ). [Gl] and [GH) and let ¢ : S — S be an
isomorphism which is the identity on RC. Suppose that for each minimal prime P
of S we have deg P=deg P? and mult P=mult P?. Then there is a one-to-one cor-
respondence e; < &; between the centrally primitive idempotents e; of Z = Cg(S) and
é; of Z=Cg(S) such that, for some g; € G, (e;s)* =&s® for all s€S. Furthermore if
the elements g; all agree modulo Gy=GNInn R, then ¢ is the restriction of some
ged.

Proof. Since the minimal primes of $ and S correspond, it follows from Lemma
11.1(ii) and mult P=mult P? that the centrally primitive idempotents of Z and of
Z correspond. Furthermore from Theorem 11.3(iii) and deg P=deg P?, there exist
group elements g; with (e;s)®=¢;s¢ for all s€ S. Finally suppose all g; agree with
g€ G modulo Gy. Then there exist units b; € B with

&;s? = (e;5)% = b; ' (e;s)*b;

so (b;;)s’ =s8(efb;). In particular b;e;=efb;.
Now let b= Y, b,;8;€ B. Then bs”=5s%b for all se€ S and b is a unit of B. Indeed,
for the latter, if gb=0, then

and hence 0=qef. But 1=Y ef, so ¢ =0 and therefore b is left regular and hence
a unit in the finite-dimensional algebra B. Thus conjugation by b gives rise to an
element g,e G and we conclude that s®=b"'s8b=5% so ¢ is the restriction of

g80€G.



176 S. Montgomery, D. Passman
12. Almost normal subgroups

In this section we use the results on extensions of automorphisms to study normal
and, more generally, almost normal subgroups of G. Again R is a prime ring and
G is an N-group of automorphisms of R unless otherwise indicated. Recall that
Hc G is an F-subgroup if H is an N-subgroup of G with B(H), the algebra of the
group of H, a simple ring.

Proposition 12.1. Let H be an F-subgroup of G and let K=Ng(H). Then Rfisa
prime ring and 9(R¥/R®)=K/H.

Proof. Proposition 9.3 implies that R¥ is prime. If g€ G, then (R)¥=R™*, s0 g
stabilizes R¥ if and only if ge K. In particular X acts on R* and fixes RC so the
restriction map yields a homomorphism of K into %(Rf/RC). Observe that
4(R/RH)=H, by Theorem 4.3, so the kernel of this homomorphism is H. Fur-
thermore since A is an F-group, R satisfies [GZ’] and [GI] and hence, by Cor-
ollary 11.4, every automorphism of R*! fixing R is the restriction of some geG.
But then g stabilizes R” so g€ K and the homomorphism is onto.

Several natural questions now arise in the above situation. First, when is R the
fixed ring of ¥(R¥/R%) and second, when is this group an N-group of automor-
phisms of the prime ring R¥. We consider these in the remainder of this section.

If A is a ring we let usp(A4) denote the linear span of its units. It is clear that
usp(A) is a subring of A with the same 1.

Lemma 12.2. Let A be an Artinian ring. Then A is semisimple if and only if usp(A)
is semisimple.

Proof. If A is semisimple, then A =@ A, is a direct sum of simple rings. If no A;
is GF(2), then it follows easily that usp(4)=A. On the other hand if some A4, is
GF(2), then usp(4)= @’ A4; where ’ indicates that all but one GF(2) summand is
deleted. Conversely suppose usp(A4) is semisimple and let J be the radical of A. Then
1+ Jcusp(A) implies that JC usp(A4) and hence that J=0.

Again let H be an F-subgroup of G. Then K/H= 9(R"/R®) and we now
describe the algebra of the group of K/H.

Lemma 12.3. Let H be an F-subgroup of G and let K=Ng(H). Then Byn(K/H) =
usp(B) where B = B(G). Furthermore this is a finite-dimensional algebra over the
extended centroid of R™ and every unit of this algebra gives rise to an X-inner
auiomorphism of RH.

Proof. By Proposition 9.6 applied to H, we have Q,(R”)=0,(R)" and thus



Galois theory of prime rings 177

B c 0y)(R™). Observe that if g is a unit of B, then g~'R” g C R and, since the left
hand side is fixed by H, we have g"'R"q c R". Thus each such ¢ gives rise to an
X-inner automorphism of R* fixing RC. In view of Proposition 12.1 this yields
usp(B") ¢ Bru(K/H).

Conversely let ge QQ(R” )=Q0(R)” be a unit which gives rise to an automor-
phism of R¥ fixing RC. Then g€ B, by Proposition 4.1, so ge BNQ,(R)"=B".
Since ¢ is a unit we have g e usp(B) and the reverse inclusion is proved. Finally
observe that Hy=HNInn R centralizes the extended centroid C of R so the finite
group H/H, acts on this field. Thus C is finite-dimensional over C* and hence so
is B. But clearly C ¢ Qy(Rf) is contained in the extended centroid of R so the
result follows.

We now formally begin the proof of Theorem D and we fix notation for the re-
mainder of this section. Thus we let H be an F-subgroup of G. K=Ng(H) and
Z = B(H). By assumption, Z is simple and we let T denote its center.

Lemma 12.4. Let .¥ be the group of units of B which give rise to automorphisns
of K and let # denote the group of units of Z.

() If he H and ke %, then k"= kz for some z€ .¥.

(i) #<x and A ¥ NBM) is a subgroup of ¥ of finite index.

Proof. (i) Since k € B, k" 'k" is a unit of B. Furthermore since k gives rise to an cle-
ment of K =Ng(H), we see that, in its action on R, k™'k" = k~'h"'kh is an element
of H. Thus this unit ¥ 'k" must belong to B(H)=Z.

(ii) Since H is an N-subgroup of G, all units of Z give rise to automorph:ms in
H and hence in K. Thus .# is a subgroup of .# and in fact .» <.» since H <K. This
implies that .#(_* NB*) is a subgroup of .#. Now .¥ acts on Z bty conjugation and
hence also on T, the center of Z. Since 7 is a finite field extension of C and » cen-
tralizes C, we conclude that .#; = # NCg(T) has finite index in .¥. Thus it suffices
to show that JA¥ NBH) has finite index in .¥;.

Let ke ;. Then conjugation by k yields an automorphism of the simple finite
dimensional algebra Z which fixes the center of Z. By the Skolem-Noether theorem.
this automorphism must be inner on Z. Thus there exists z € ¥ such that 3~ 'k cen-
tralizes Z. We have therefore shown that ¥, = #¥, where .¥; = NCg(Z) and thus
it suffices tc show that [.%;: T°(¥ N BH)) < . Here T° denotes the multiplicative
group of T and clearly T°=N.¥,. Note that H acts on B,Z and T and that
Hy=HNInn R acts trivially on 7. Thus if L=Cy(T), then L2 H,so 'H/L <ce.
Furthermore, since H C K it is clear that H acts on .¥ and then on .x,. Our goal is
to show that [#: ¥NB']<o and then that .# NB!=T°(x NBY). This will
surely prove the result.

Observe that H|, centralizes .¥, so that the finite group L/H, acts on .¥,. Fix
he L and, for each ke ¥, write k" =kA(k) where A(k)e.» by (i) above. Since
k" ke x, we see that A(k)e #N.¥,=T° and thus A is a map from ¥, to 7°. In-
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deed if k,, k, € X, then, since .¥; centralizes 7°. we have
kika Atk k) = ey ko) = ki k3
= ki Ak ko A(k2) =k ko Ak DA(K2)

and A : .4, = T° is actually a linear character. Furthermore since h € L acts trivially
on T° we have easily k*" =kA(k)™ for all integers m. But |L/Hy| <o, so h"e H,
for some n=1 and thus A is a homomorphism from .¥; into the finite group of n-th
roots of unity in 7. We conclude therefore that 4 centralizes a subgroup of finite
index in ¥, namely the kernel of A. Since this is true for each element #€ L and
since L/H, is finite, we deduce that [f5: ¥ NBL}< .

107 a0 DHY nl Then for eac

nlL - .
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he H we have, by (i) above, k" = ku(h) where u(h) e #. Again since k% ke Ny We

see that y(h)e #N .¥,=T° and thus u is a map from H to T°. Indeed since L acts
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trivially on k € ¥ NBL, u is actually a map from the finite group H/L to T°. Next
suppose #,, h,€ H. Then

kuthyhy) = k"h: = (ku(h,))" = ku(hy)uh )"

so u satisfies Noether’s equation u(h,h,)=pu(h,)"*u(h,). Therefore by the above
remarks and the fact that H/L acts faithfully on the field 7, we conclude that u is
a trivial crossed homomorphism. In other words, there exists e T° with u(h)=1t/ th
for all he H. But then k"= ku(h) = kt/t" implies that kte ¥ NBY and hence that
k=t"'kte T°(¥NBH). Thus ¥ NBL=T°(x¥NB") and, as indicated above, this
completes the proof.

Lemma 12.5. B{(K) is semisimple if and only if usp(BY) is semisimple.

Proof. It is clear that A4 =usp(B") is a subalgebra of B(K).
Suppose first that B(K) is semisimpie and let J be the radical of A4.

Then Jis a
characteristic llllpULClu ideal of the finite-dimensional angcuna A. Now if k is a unit
of B(K) giving rise to an element of K, then K=Ng(H) implies that
k~'(Bf)k = B and hence that k~'Jk =J. Since B(K) is spanned by such elements
k, it follows that /- B(K)=B(K)- J is a two-sided ideal of B(K} which is clearly also
nilpotent. Thus since B(K) is semisimple, we have J=0.

Conversely suppose A is semisimple and let 7 be the radical of B(K). Then since
H ¢ K we see that B(K) and hence I is H-invariant. Moreover Z = B(H) ¢ B(K). Sup-
pose k is a unit of B(K) giving rise to an element of XK. Then k™ 'Zk=2Z impiies that
kZ is a (Z, Z)-subbimodule of B(K). Moreover Z is a simple ring and X is a unit so
kZ is therefore a simple (Z, Z)-bimodule. Since B(K) is the linear span of all such
k, we see that B(K)=Y, kZ and hence that B(K)=®k;Z, a direct sum of certain
of these simple subbimodules.

Now suppose 7+0. For each we I\ 0 and direct sum B(K)=®k;Z as above, we
look at the number of nonzero components of w written in thi; decomposition. We
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now choose w and the decomposition B(K)=®k;Z so that this number, say n, is
minimal. In particular if we write w= Y k;z; with z;€ Z, then precisely n of the z,
are nonzero and say z;#0. Now @k;'%,Z is also a decomposition of B(K) and,
in this decomposition, ¥ k;'k;z;=k;'weI has the same parameter n. Thus we can
replace w by k7'w if necessary and assume that k, =1. Next, since Z is a simple
ring we have 1€ Zz,Z. Thus since each k;7 is a (Z, Z)-bimodule, we can clearly
replace w by a suitable element of ZwZ C I to further assume that g, =1.

Finally, we observe from Lemma 12.4(i) that each kZ is H-invariant. Thus if
he H, then since k,z,=1, we see that wh—wel has at most n— 1 nonzero com-
ponents in the decomposition B(K) =@ k;Z. By the minimality of n, we conclude
that w"=w for all he H so we B, Furthermore w is nilpotent so 1 + w is a unit
of B and hence weusp(B)=A. We have therefore shown that /N4 #0. But
A CB(K) so INA is a nilpotent ideal of the semisimple ring 4 and we obtain the
necessary contradiction.

In view of Lemma 12.2 and the above, we see that B(K) is semisimple if and only
if BH is semisimple.

We recall some definitions from Section 1 as applied to the present situation. It A
is an M-subgroup of G, then K can be completed to an N-subgroup K of G by ad-
joining to K the action of all units of B(K). Thus clearly B(K) = B(K) and further-
more RX = RX since any element of R fixed by X is fixed bv all units of B(K). We
say that H is almost normal in G if for K=Ng(H) we have K =G. Finally R*/R"
is N-group Galois if ¥(R/R) is an N-group of automorphisms of the prime ring
R¥ with fixed ring equal to R®. We now prove Theorem D.

Theorem 12.6. Let G be an N-group of automorphisms of the prime ring R and let
H be an F-subgroup of G. Then R is N-group Galois over RC if and only if H is
almost normal in G.

Proof. Suppose first that R¥ is N-group Galois over R¢. Then usp(B¥) is
semisimple by Lemma 12.3 and hence so is B(K) by Lemma 12.5. Thus K is an
M-subgroup of G and we let I? denote its completion. In particular K is an
N-subgroup of G with RX=RX. Now by assumption and Proposition 12.1, we
have

RG=(RH)K/H=RK___RI£—'.

Thus Theorem 4.3 applied to K yields K=G and H is almost normal.

Conversely, suppose H is almost normal in G. In particular, B(K) = B is scuu-
simple and hence so is usp(B”) by Lemma 12.5. Thus by Lemma 1I.3,
Bgu(K/H)=usp(B*) is a semisimple finite-dimensional algebra over the extendeu
centroid of R and every unit of this algebra gives rise t0 an X-inner automor-
phism of R¥. Moreover, since G is the completion of K we have

(RH)K/H__: RK=RG.
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It remains to show that the X-inner automorphisms have finite index in K/H.
We now apply the notation and result of Lemma 12.4(ii). Then

[.¥ : (¥ NBH)) <o and this implies that [Ky: HyK ;] <o where K,=KNInnR,

Hy=HNInn R and where K, is the image of x NB* in Aut(R). But, by Lemma

12.3, every element of K, gives rise to an X-inner automorphism of RY. Hence

e H Gy 7023 ZPURE N ¥ Y I 7 JL AU FUNE DURPE SNPRRPS TR U i R

SINCC Y\ /K™ )=N/11 ana |n D] <@ WE L0 1ICIUUC tnat e A lllllt:l automor-

phisms in #(R/RC) are indeed a subgroup of finite index and the theorem is
'\"r\‘!ﬂl{
lJlUV\r\.l-

We remark that normal F-subgroups are rather scarce while almost normal ones

are plentiful. For example suppose G is an X-inner F-group so that B is simple.
Since the group of units of B is a general linear group and hence close to simple,
we see that G has few normal subgroups. On the other hand, suppose H is an
F-subgroup of G with Z=B(H) having the same center 7 as that of B. Then it
follows that B=Z®;Cg(Z). Hence if Cg(Z) is spanned by its units and
K =WNg(H), we conclude that B(K)=B so H is almost normal in G.

In this final section we discuss a few interesting examples. In all cases, R is a
matrix ring over a domain and in fact the domain is either a field K or a noncom-

mutative free algebra. We note that if F=K(x,, x5,...) is such an algebra, then F
is a domam with extended centroid K and with no nonidentity X-inner
automorphisms.

We begin with three examples related to the existence of trace forms, the third
one being due to G.M. Bergman. Recall that the dual group B*=Hom(B,C) is a
right B-module.
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Example 13.2. Let R =M.-(K) with char K=p>2 and let G be the group of inner
automorphism: generated by

Na—""

1 1
i 1
0 1
v o1

Then |G| =2p and B is the 3-dimensional K-algebra spanned by e,,, e,, and e,,. In

particular, B is not semisimple so G is not an M—group Observe that the map
DDk _.D e L. Ar_ %\ _ N Ns_ %k n 11
v:p%— D given by O(e;;)=0, d{ex;)=e,, and U(e,zj—e” defines a right B-module
hr\mr\mr\r hicrm Ac inn T amiona D12 u.. ............ ammmbeterianl b aa Lmann
NULIUIIUT Ay i LoHifla 4.0, lis EIVCD lle t0 a nontriviai trace 1orm
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Example 13.3. Suppose F=K(x, y> where char K=p>2, let R=M,(F) and let G
be the finite group of inner automorphisms generated by

(0 2} (6 7) = ()

Then |G| =2p? and R®=K, embedded as scalars. Furthermore, the algebra of the
group B is the 4-dimensional K-algebra spanned by e,;, ¢,,, Xe;; and ye,,. It is easy
to verify directly that there is no nonzero B-module homomorphism 6: B*—B.
Alternately let 7 be the ideal of R generated by x and y. Then /#0 is G-invariant,
but INRC=INK=0. Hence the nonexistence of & follows from Lemmas 2.3 and
4.6.

The next two examples concern the independence of the four Galois subring con-
ditions, the second being due to Teichmiiller. We could of course offer numerous
examples to cover other possibilities, but these are the only really interesting cases.

Example 13.4. Let K=GF(2), R=M,(K), G=GL,(K)=Sym, and let § be the
diagonal subring of R. Then G is an N-group of inner automorphisins, S2 RY = K
and Z=Cgz(S)=S. Furthermore, S satisfies [GI], [GH], [GC] and Z is semisimple.
However, in spite of Theorem 7.4, we have H= %(R/S)=(l) and S=R"=R.
What fails here, of course, is that Z is not spanned by its units.

Example 13.5. Let ¢ be an automorphism of K of finite order r=3 and let
k=K. Set R=M,(K) and let G=(GL,(K),0). Then G is an N-group of auto-
morphisms with B=M,(K) and R®=k. Now let S={diag(a, ¢°)|aeK}. Then
S2RC, Z=Cgx(S) is the ring of diagonal matrices and S=K. Thus S satisfies [GZ].
[GC] and, with a little checking, [GI]. On the other hand, since ¢ has order =3, it
follows easily that H= %(R/S) is inner and hence that RH=27>8S. In view of
Theorem 7.4 this of course implies that S does not satisfy Galois homogeneity and
indeed with b= (3 J) € B we have bs=5sb for all s€ S but g ¢ HG,.

This also gives rise to the following observation. The subring K, embedded as
scalars, is the fixed ring of GL,(K) and hence satisfies {GI] and [GH]. Furthermore
the map ¢ : K — S defined by a—diag(a, @”) is an isomorphism which is the identity
on RY. But S=K? does not satisfy [GH].

The following two examples show that certain embeddings ¢ : S — S cannot extend
to elements of G. The first one fails because the degrees of the corresponding
minimal primes do not agree. The second one fails because ¢ is defined ‘differently’
on the distinct factors S/P.

Example 13.6. Let R=M,(K) and G =GL,(K) so that RO =K. Set
S={diag(a,a,b,b)|a,be K} and S§={diag(a, b, b,b)|a.be K}
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so that S is the fixed subring of GL,(K)XGL,(K) and § is the fixed subring of
GL,(K)x GL;(K). Now ¢ :5~S given by ¢: diag(a, a, b, b)-diag(a, b, b, b) is sure-
ly an isomorphism which is the identity on RC. But ¢ cannot extend to an element
of G since Cg($) and Cg(S) are not isomorphic. Indeed the minimal primes of S
have degrees 2,2 while those of § have degrees 1, 3.

Example 13.7. Let o# 1 be an automorphism of K of finite order and let k = K¢?,
Set R=M,(K) and G={(GL,(K), o) so that RC=k. If S is the subring of diagonal
matrices, then S is the fixed subring of GL,(X) X GL,(K). Now define ¢ :S—S by
¢ : diag(a, b)—diag(a®, b). It is easy to verify that ¢ cannot extend to an element
g€ G. In essence, ¢ extends to two different elements, one for each of the two prime
factor rings S/P.

The remaining two examples show that ¢ need not be ex.ciidible to an element
of G even if S is prime and ¢ extends to (S, Z).

Example 13.8. Let F=K(x, y, 2) be the free algebra over K+ GF(2) with generators
X, ¥,z and let Sym; act on F by permuting these generators. For definiteness take
o and 7 to be the transpositions o = (xy) and 7=(yz). Now suppose R = M,(F) and
let G=GL,(K)xSym; act on R. Then R%=FY™’ C=K and hence B=M,(K).

Now let H be the subgroup of G generated by GL,(K) X GL,(K), the diagonal
elements in GL,(K), and the automorphism ({ })o of order 2. Then S=R"=
{diag(a, a°) | acF} and Z=Cg(S) is the set of diagonal matrices in M,(K).
Observe that H interchanges the two idempotents e,;, e, € Z, so Z is H-simple.

Define ¢:5—-S by diag(a, a®)—diag(a’,a™). Observe that this is an isomor-
phism which is the identity on R®CS. Furthermore ¢ can clearly extend to
¢ :(S, Z)—(S, Z) by defining ¢ to be the identity on Z. In view of Theorem 11.3,
there exist group elements g,, g, € G with (e;5)% = ¢;s%; in fact we can clearly take
g,=7and g;=0" '70. On the other hand, 1€ Z is the unique H-centrally primitive
idempotent of Z and there does not exist g€ G with s& =s? for all se S. Indeed sup-
pose 58 =s® where g=gy4 with goe GL,(K) and A € Sym,. Then since X is central,
8o preserves matrix traces, and we have

a*+a°*=(a+a°) =a"+a"

for all a € F. But this yields a vanishing trace form and Sym; is X-outer on F. Thus
this form must be trivial. In particular we have 1 =064, 1 or 76 and by considering
each in turn, using 6#1 and ot # 70, we get a contradiction.

Example 13.9. We modify the above slightly and start with F=K(x, y, u,v), 6 = (xy)
and 7=(uv). Then G=GL,(K)X(0,7) acts on R= M,(F) with B=M,(K) and
R =F‘%?_ Again let

H=(GL,(K)xGL,(K), (¢ {)o)
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and let
H=(GL,(K)xGL(K),(} §)7).

Then S=R" ={diag(a, a°) | ae F} and S=RA-= {diag(a, a’) l eeF}. Clearly Z=2
is the set of diagonal matrices in M,(K) and this ring is both H- and H-simple.
Now define ¢ : S —38 by diag(a, a®)—diag(a, a*). This ¢ is an isomorphism which is
the identity on RC. Furthermore ¢ can be extended to an isomorphism ¢ :<S, Z)—
(S, Z) by defining ¢ to be the identity on Z.

Here we claim that there is no ge G with S8=SY=3§. More generally suppose
J&C § where g =gyA with gye GL,(K), 4 € (g, t) and where J is an ideal of §. Then
we show that J=0. Observe that J={diag(a,a’) | ael} for some ideal I of F and
hence for each ael we have

diag(a, a°)&* = diag(b, b7)

for some b e F. Taking traces as before, this yields (@ +a°)* = b+ b and since the
right hand side is fixed by t we obtain, for all ae/

(@a+a°) =(a+a’)*.

If I+0, then this yields a vanishing trace form. But observe that A € (g, ) and that
the latter group is a fours group of X-outer automorphisms of F. We can then con-
sider each of the four possibilities A = 1, 6, 7, 67, in turn, and obtain a contradiction.
Thus 7=0 and J=0, as claimed.
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